Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. However, the mechanism of neuritin in modulating neurite growth has not been elucidated. Here, using yeast two-hybrid we screened and discovered the interaction of neuritin and neuralized (NEURL1), which is an important regulator that can activate Notch signaling through promoting endocytosis of Notch ligand. And then we identified the interaction of neuritin and neuralized by co-immunoprecipitation (IP) assays, and clarified that neuritin and NEURL1 were co-localized on the cell membrane of SH-SY5Y cells. Moreover, neuritin significantly suppressed Notch ligand Jagged1 (JAG1) endocytosis promoted by NEURL1, and then inhibited the activation of Notch receptor Notch intracellular domain (NICD) and decreased the expression of downstream gene hairy and enhancer of split-1 (HES1). Importantly, the effect of neuritin on inhibiting Notch signaling was rescued by NEURL1, which indicated that neuritin is an upstream and negative regulator of NEURL1 to inhibit Notch signaling through interaction with NEURL1. Notably, recombinant neuritin restored the retraction of neurites caused by activation of Notch, and neurite growth stimulated by neuritin was partially blocked by NEURL1. These findings establish neuritin as an upstream and negative regulator of NEURL1 that inhibits Notch signaling to promote neurite growth. This mechanism connects neuritin with Notch signaling, and provides a valuable foundation for further investigation of neuritin’s role in neurodevelopment and neural plasticity.
Tuberculosis (TB) is a globally prevalent infectious disease. The mechanisms of latent TB infection (LTBI) remain to be fully elucidated and may provide novel approaches for diagnosis. As therapeutic targets and molecular diagnostic markers, microRNAs (miRs) have been studied and utilized in various diseases. In the present study, the differentially expressed miRs (DEMs) in LTBI were screened and analyzed to determine the underlying mechanisms and identify potential biomarkers, thereby contributing to the diagnosis of LTBI. The GSE25435 and GSE29190 datasets from Gene Expression Omnibus were selected for analysis. The 2 datasets were analyzed individually using the Bioconductor package to screen the DEMs with specific cutoff criteria [P<0.01 and |log (fold change)|≥1]. Target gene prediction and interaction network construction were performed using Targetscan, the Search Tool for the Retrieval of Interacting Genes and Proteins and Cytoscape individually, and were merged using the latter tool. The hub genes were finally selected based on their degree of connectivity (DC). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the KEGG and GENCLIP. A total of 144 DEMs were identified from the 2 datasets. By exploring the overlapping miRs in the two datasets, Homo sapiens (hsa)-miR-29a and hsa-miR-15b were identified to be decreased, while hsa-miR-576-5p, hsa-miR-500 and hsa-miR-155 were identified to be upregulated. hsa-miR-500a-3p and hsa-miR-29a-3p, as well as 4 genes, namely cell division cycle (CDC)42, actin α1, skeletal muscle (ACTA1), phosphatase and tensin homolog (PTEN) and fos proto-oncogene (FOS), were selected as the key factors in this regulatory network. A total of 9 signaling pathways, including phosphoinositide-3 kinase (PI3K)/AKT and 11 biological processes, were identified to be associated with LTBI. In conclusion, the present analysis identified hsa-miR-500a-3p and hsa-miR-29a-3p, as well as CDC42, ACTA1, PTEN and FOS, as the most promising biomarkers and therapeutic candidates for LTBI. The PI3K/AKT signaling pathway is the key signaling pathway implicated in LTBI, and an in-depth investigation of the efficiency of PI3K/AKT signaling inhibitors may be used to prevent a chronic state of infection in LTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.