This paper presents a theoretical method for separating bending and torsion of shape sensing sensor to improve sensing accuracy during its deformation. We design a kind of shape sensing sensor by encapsulating three fibers on the surface of a flexible rod and forming a triangular FBG sensors array. According to the configuration of FBG sensors array, we derive the relationship between bending curvature and bending strain, and set up a function about the packaging angle of FBG sensor and strain induced by torsion under different twist angles. Combined with the influence of bending and torsion on strain, we establish a nonlinear matrix equation resolving three unknown parameters including maximum strain, bending direction and wavelength shift induced by torsion and temperature. The three parameters are sufficient to separate bending and torsion, and acquire two scalar functions including curvature and torsion, which could describe 3D shape of rod according to Frenet-Serret formulas. Experimental results show that the relative average error of measurement about maximum strain, bending direction is respectively 2.65% and 0.86% when shape-sensing sensor is bent into an arc with a radius of 260 mm. The separating method also applied to 2D shape and 3D shape of reconstruction, and the absolute spatial position maximum error is respectively 3.79mm and 11.10mm when shape-sensing sensor with length 500mm is bent into arc shape with a radius 260mm and helical curve. The experiment results verify the feasibility of separating method, which would provide effective parameters for precise 3D reconstruction model of shape sensing sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.