Distributional Semantic Models (DSMs) established themselves as a standard for the representation of word and sentence meaning. However, DSMs provide quantitative measurement of how strongly two linguistic expressions are related, without being able to automatically classify different semantic relations. Hence the notion of semantic similarity is underspecified in DSMs. We introduce Evalution-MAN in this paper as an effort to address this underspecification problem. Following the EVALution 1.0 dataset for English, we present a dataset for evaluating DSMs on the task of the identification of semantic relations in Mandarin Chinese. Moreover, we test different types of word vectors on the automatic learning of these semantic relations, and we evaluate them both in a unsupervised and in a supervised setting, finding that distributional models tend, in general, to assign higher similarity scores to synonyms and that deep learning classifiers are the best performing ones in the identification of semantic relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.