A new nonlinear conjugate gradient method and an associated implementation, based on an inexact line search, are proposed and analyzed. With exact line search, our method reduces to a nonlinear version of the Hestenes-Stiefel conjugate gradient scheme. For any (inexact) line search, our scheme satisfies the descent condition g T k d k ≤ − 7 8 g k 2 . Moreover, a global convergence result is established when the line search fulfills the Wolfe conditions. A new line search scheme is developed that is efficient and highly accurate. Efficiency is achieved by exploiting properties of linear interpolants in a neighborhood of a local minimizer. High accuracy is achieved by using a convergence criterion, which we call the "approximate Wolfe" conditions, obtained by replacing the sufficient decrease criterion in the Wolfe conditions with an approximation that can be evaluated with greater precision in a neighborhood of a local minimum than the usual sufficient decrease criterion. Numerical comparisons are given with both L-BFGS and conjugate gradient methods using the unconstrained optimization problems in the CUTE library.
This paper considers a class of constrained stochastic composite optimization problems whose objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a certain non-differentiable (but convex) component. In order to solve these problems, we propose a randomized stochastic projected gradient (RSPG) algorithm, in which proper mini-batch of samples are taken at each iteration depending on the total budget of stochastic samples allowed. The RSPG algorithm also employs a general distance function to allow taking advantage of the geometry of the feasible region. Complexity of this algorithm is established in a unified setting, which shows nearly optimal complexity of the algorithm for convex stochastic programming. A post-optimization phase is also proposed to significantly reduce the variance of the solutions returned by the algorithm. In addition, based on the RSPG algorithm, a stochastic gradient free algorithm, which only uses the stochastic zeroth-order information, has been also discussed. Some preliminary numerical results are also provided. keywords constrained stochastic programming, mini-batch of samples, stochastic approximation, nonconvex optimization, stochastic programming, first-order method, zeroth-order method August, 2013.
A new nonmonotone line search algorithm is proposed and analyzed. In our scheme, we require that an average of the successive function values decreases, while the traditional nonmonotone approach of Grippo, Lampariello, and Lucidi [SIAM J. Numer. Anal., 23 (1986), pp. 707-716] requires that a maximum of recent function values decreases. We prove global convergence for nonconvex, smooth functions, and R-linear convergence for strongly convex functions. For the L-BFGS method and the unconstrained optimization problems in the CUTE library, the new nonmonotone line search algorithm used fewer function and gradient evaluations, on average, than either the monotone or the traditional nonmonotone scheme.
An active set algorithm (ASA) for box constrained optimization is developed. The algorithm consists of a nonmonotone gradient projection step, an unconstrained optimization step, and a set of rules for branching between the two steps. Global convergence to a stationary point is established. For a nondegenerate stationary point, the algorithm eventually reduces to unconstrained optimization without restarts. Similarly, for a degenerate stationary point, where the strong secondorder sufficient optimality condition holds, the algorithm eventually reduces to unconstrained optimization without restarts. A specific implementation of the ASA is given which exploits the recently developed cyclic Barzilai-Borwein (CBB) algorithm for the gradient projection step and the recently developed conjugate gradient algorithm CG DESCENT for unconstrained optimization. Numerical experiments are presented using box constrained problems in the CUTEr and MINPACK-2 test problem libraries.
In the cyclic Barzilai-Borwein (CBB) method, the same Barzilai-Borwein (BB) stepsize is reused for m consecutive iterations. It is proved that CBB is locally linearly convergent at a local minimizer with positive definite Hessian. Numerical evidence indicates that when m > n/2 3, where n is the problem dimension, CBB is locally superlinearly convergent. In the special case m = 3 and n = 2, it is proved that the convergence rate is no better than linear, in general. An implementation of the CBB method, called adaptive cyclic Barzilai-Borwein (ACBB), combines a non-monotone line search and an adaptive choice for the cycle length m. In numerical experiments using the CUTEr test problem library, ACBB performs better than the existing BB gradient algorithm, while it is competitive with the well-known PRP+ conjugate gradient algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.