Human skin is a self-healing mechanosensory system that detects various mechanical contact forces efficiently through three-dimensional innervations. Here, we propose a biomimetic artificially innervated foam by embedding three-dimensional electrodes within a new low-modulus self-healing foam material. The foam material is synthesized from a one-step self-foaming process. By tuning the concentration of conductive metal particles in the foam at near-percolation, we demonstrate that it can operate as a piezo-impedance sensor in both piezoresistive and piezocapacitive sensing modes without the need for an encapsulation layer. The sensor is sensitive to an object’s contact force directions as well as to human proximity. Moreover, the foam material self-heals autonomously with immediate function restoration despite mechanical damage. It further recovers from mechanical bifurcations with gentle heating (70 °C). We anticipate that this material will be useful as damage robust human-machine interfaces.
The utilization of porous carbon frameworks as hosts for sulfur loading is an important theme in current Li‐S battery research. Unfortunately, the high loading of insulating sulfur often leads to low specific capacities, poor rate properties, and rapid capacity loss. To address this challenge, a facile templating route to fabricate a novel host material, hierarchical porous carbon rods constructed by vertically oriented porous graphene‐like nanosheets (HPCR) is presented. With a high specific surface area, ultralarge pore volume, hierarchical porous structures, and ideal ion transfer pathways, HPCR is a promising candidate for high sulfur loading. When used as the active material for a sulfur cathode, the HPCR‐S composite with 78.9 wt% sulfur exhibits excellent rate performance (646 mAh g−1sulfur at 5 C) and cycling stability (700 mAh g−1sulfur after 300 cycles at 1 C). Even with a sulfur content of 88.8 wt%, the HPCR‐S composite, without any additional protective polymer coating, still delivers a good rate performance (545 mAh g−1sulfur at 3 C) and cycling stability (632 mAh g−1sulfur after 200 cycles at 1 C). More importantly, the high sulfur loading (88.8 wt%) ensures that the HPCR‐S composite has a high energy density (880 mAh cm−3cathode after 200 cycles at 1 C).
Power sources with good mechanical compliance are essential for various flexible and stretchable electronics. However, most of the current energy storage devices comprise of hazardous materials that may cause environmental pollution when improperly disposed. We show the first example of a stretchable, yet fully degradable battery made from nontoxic and environmentally friendly materials such as fruit‐based gel electrolytes and cellulose paper electrodes. The battery exhibits an areal capacity of 2.9 μAh cm−2 at 40 μA cm−2, corresponding to a maximum energy density around 4.0 μW h cm−2 at 56 μW cm−2 power density. The biomaterials constituted battery shows good mechanical tolerance to twisting, bending, and stretching while powering various electronic devices when combined with kirigami. Importantly, the entire battery disintegrates readily in phosphate buffered saline/cellulase solution. We integrate the “green” battery with various sensors in wearable healthcare devices for pulsation sensing and low‐noise surface electromyography applications.
Skin-like sensors that transduce tactile pressures and vibrations with minimal environment variation on performance are crucial in robotic sensing and prosthetic skins. However, sensor performance variations under varying environmental conditions, such as temperature and humidity, are common in piezoresistive sensors because of their intrinsic materials properties. Moreover, the viscoelasticity of soft elastomers causes strain response in a time-dependent fashion, which poses sensor limitations in high-frequency tactile tasks, such as texture recognition. In this work, we demonstrate a new environment-robust tactile sensor via an interfacial engineering process for uniform graphene coating on microstructured elastomers. The sensor enables reliable pressure response over a range of temperature (25−60 °C) and humidity (30−90% relative humidity) conditions, with resistance variations less than 5% and 3%, respectively. It is also able to detect vibrations with frequency up to 1500 Hz. Moreover, our sensor shows ultra-high durability, with high sensitivity and low hysteresis preserved after 1 million cycles. We demonstrate applications with the sensor in epidermal signal monitoring at different arteries, as well as accurate (>95%) surface texture recognition in combination with machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.