Although most cultivated soils have high levels of total phosphorus (P), the levels of bioavailable inorganic P (Pi) are insufficient. The application plant growth-promoting rhizobacteria (PGPR) is an eco-friendly strategy for P utilization; however, PGPR-mediated plant responses that enhance Pi acquisition remain unexplored. Here, we investigated the effect of Azospirillum brasilense on Arabidopsis adaptation to Pi deficiency. Results showed that A. brasilense inoculation alleviated Pi deficiency-induced growth inhibition and anthocyanin accumulation and increased the total P content in Arabidopsis plants. A comprehensive analysis of root morphology revealed that A. brasilense increased root hair density and length under Pi-limited conditions. We further demonstrated that A. brasilense enhanced acid phosphatase activity and upregulated the expression of several Pi transporters, such as PHO1, PHT1;1 and PHT1;4. However, A. brasilense did not enhance the growth or total P content in pht1;1, pht1;4, and pht1;1pht1;4 mutants. Moreover, A. brasilense could not increase the P content and PHT1;1 expression in the root hairless mutant rsl4rsl2, because of the occurrence of low Pi-induced PHT1;1 and PHT1;4 in root hairs. These results indicate that A. brasilense can promote root hair development and enhance acid phosphatase activity and Pi transporter expression levels, consequently improving the Pi absorption capacity and conferring plant tolerance to Pi deficiency.
Lipid peroxidation is a common event during aluminum (Al) toxicity in plants, and it generates an array of aldehyde fragments. The present study investigated and compared the profile and physiological functions of lipid peroxide-derived aldehydes under Al stress in two wheat genotypes that differed in Al resistance. Under Al stress, the sensitive genotype Yangmai-5 suffered more severe plasma membrane damage and accumulated higher levels of aldehydes in roots than the Al-tolerant genotype Jian-864. The complementary use of high-resolution mass spectrometry and standard compounds allowed the identification and quantification of 13 kinds of short-chain aldehydes sourced from lipids in wheat roots. Among these aldehydes, acetaldehyde, isovaldehyde, valeraldehyde, (E)-2-hexenal (HE), heptaldehyde, and nonyl aldehyde were the predominant species. Moreover, it was found that HE in the sensitive genotype was over 2.63 times higher than that in the tolerant genotype after Al treatment. Elimination of aldehydes using carnosine rescued root growth inhibition by 19.59 and 11.63% in Jian-864 and Yangmai-5, respectively, and alleviated Al-induced membrane damage and protein oxidation. Exogenous aldehyde application further inhibited root elongation and exacerbated oxidative injury. The tolerant genotype Jian-864 showed elevated aldehyde detoxifying enzyme activity and transcript levels. These results suggest that lipid peroxide-derived short-chain aldehydes are involved in Al toxicity, and a higher aldehyde-detoxifying capacity may be responsible for Al tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.