COVID-19 has remained an uncontained, worldwide pandemic. While battling for the disease in China, six Traditional Chinese Medicine (TCM) recipes have been shown to be remarkably effective for treating patients with COVID-19. The present review discusses principles of TCM in curing infectious disease, and clinical evidence and mechanisms of the 6 most effective TCM recipes used in treating COVID-19 in 92% of all of the confirmed cases in China. Applications of TCM and specific recipes in the treatment of other viral infections, such as those caused by SARS-CoV, MERS-CoV, hepatitis B virus, hepatitis C virus, influenza A virus (including H1N1 and H7N9), influenza B, dengue virus as well as Ebola virus, are also discussed. Among the 6 TCM recipes, Jinhua Qinggan (JHQG) granules and Lianhua Qingwen (LHQW) capsules are recommended during medical observation; Lung Cleansing and Detoxifying Decoction (LCDD) is recommended for the treatment of both severe and non-severe patients; Xuanfeibaidu (XFBD) granules are recommended for treating moderate cases; while Huashibaidu (HSBD) and Xuebijing (XBJ) have been used in managing severe cases effectively. The common components and the active ingredients of the six TCM recipes have been summarized to reveal most promising drug candidates. The potential molecular mechanisms of the active ingredients in the six TCM recipes that target ACE2, 3CL pro and IL-6, revealed by molecular biological studies and/or network pharmacology prediction/molecular docking analysis/visualization analysis, are fully discussed. Therefore, further investigation of these TCM recipes may be of high translational value in revealing novel targeted therapies for COVID-19, potentially via purification and characterization of the active ingredients in the effective TCM recipes.
Soil microbes play important roles in plant growth and health. Little is known about the differences of soil microbes between healthy and bacterial wilt infected soils with Ralstonia solanacearum. By Illumina-MiSeq sequencing of 16S rRNA and 18S rRNA gene amplicons, we found the soil microbial composition and diversity were distinct between healthy and bacterial wilt infected soils. Soil microbial community varied at different plant growth stages due to changes of root exudates composition and soil pH. Healthy soils exhibited higher microbial diversity than the bacterial wilt infected soils. More abundant beneficial microbes including Bacillus, Agromyces, Micromonospora, Pseudonocardia, Acremonium, Lysobacter, Mesorhizobium, Microvirga, Bradyrhizobium, Acremonium and Chaetomium were found in the healthy soils rather than the bacterial wilt infected soils. Compared to bacterial wilt infected soils, the activities of catalase, invertase and urease, as well as soil pH, available phosphorous and potassium content, were all significantly increased in the healthy soils. In a conclusion, the higher abundance of beneficial microbes are positively related the higher soil quality, including better plant growth, lower disease incidence, and higher nutrient contents, soil enzyme activities and soil pH.
Plant-parasitic nematodes cause serious crop losses worldwidely. This study intended to discover the antagonistic mechanism of Bacillus cereus strain S2 against Meloidogyne incognita. Treatment with B. cereus strain S2 resulted in a mortality of 77.89% to Caenorhabditis elegans (a model organism) and 90.96% to M. incognita. In pot experiment, control efficiency of B. cereus S2 culture or supernatants were 81.36% and 67.42% towards M. incognita, respectively. In field experiment, control efficiency was 58.97% towards M. incognita. Nematicidal substances were isolated from culture supernatant of B. cereus S2 by polarity gradient extraction, silica gel column chromatography and HPLC. Two nematicidal compounds were identified as C16 sphingosine and phytosphingosine by LC-MS. The median lethal concentration of sphingosine was determined as 0.64 μg/ml. Sphingosine could obviously inhibit reproduction of C. elegans, with an inhibition rate of 42.72% for 24 h. After treatment with sphingosine, ROS was induced in intestinal tract, and genital area disappeared in nematode. Furthermore, B. cereus S2 could induce systemic resistance in tomato, and enhance activity of defense-related enzymes for biocontrol of M. incognita. This study demonstrates the nematicidal activity of B. cereus and its product sphingosine, as well provides a possibility for biocontrol of M. incognita.
Satellite observations show that large‐scale phytoplankton blooms (increases in chlorophyll) occurred in the equatorial Pacific in 1998, 2003, and 2005, following termination of the three most recent El Niño events. The occurrence of blooms following successive El Niño events cannot be explained by local enhancement of vertical nutrient flux, as evidenced by observations of equatorial winds, thermocline depth, and the depth and strength of the Equatorial Undercurrent (EUC, which supplies the limiting nutrient iron to the euphotic zone). However, near the peak of each El Niño event (late in 1997, 2002, and 2004), while the thermocline of the western equatorial Pacific was anomalously shallow, the flow of the New Guinea Coastal Undercurrent (NGCUC, which is the primary source of iron‐enriched waters to the EUC) intensified, and its core shoaled from >200 m to ∼100 m depth. Analysis of NGCUC variability using a high‐resolution, terrain‐following three‐dimensional ocean circulation model simulation indicates that as the NGCUC shoals and intensifies, it develops meanders and eddies that augment coupling of the New Guinea shelf and upper slope to the EUC. We hypothesize that these changes in NGCUC circulation during El Niño enhance iron transport from the New Guinea margin into the EUC and thereby trigger large‐scale blooms when iron‐enriched waters subsequently reach the euphotic zone along the equator. The threefold to fourfold chlorophyll increases over large regions, up to ∼5 × 105 km2, must have profound impacts on the equatorial ecosystem and biogeochemical cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.