We develop a new framework for multi-agent collision avoidance problem. The framework combined traditional pathfinding algorithm and reinforcement learning. In our approach, the agents learn whether to be navigated or to take simple actions to avoid their partners via a deep neural network trained by reinforcement learning at each time step. This framework makes it possible for agents to arrive terminal points in abstract new scenarios.In our experiments, we use Unity3D and Tensorflow to build the model and environment for our scenarios. We analyze the results and modify the parameters to approach a well-behaved strategy for our agents. Our strategy could be attached in different environments under different cases, especially when the scale is large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.