We propose a reliable scheme for one-step synthesizing of a quantum fan-out gate in a system of neutral atoms. By introducing the off-resonant driving fields with Gaussian temporal modulation, the dynamics of the system is strictly restricted to the ground-state subspace on the basis of unconventional Rydberg pumping, which exhibits more robustness than the constant driving method against the fluctuation of system parameters, such as operating time and environment noise. As a direct application of this quantum fan-out gate, we discuss in detail the preparation of multipartite Greenberger–Horne–Zeilinger (GHZ) state for neutral atoms. The result shows that a high fidelity better than 99% can be obtained within the state-of-the-art experiments.
Entanglement can be considered as a special quantum correlation, but not the only kind. It is allowed to exist non-classical correlations even for a separable quantum system. Here we propose two dissipative schemes for generating a maximally correlated state of two qubits in the absence of quantum entanglement, which was raised by [F. Galve, G. L. Giorgi, and R. Zambrini, Phys. Rev. A 83, 012102 (2011)]. These protocols take full advantages of the interaction between four-level atoms and strongly lossy optical cavities. In the first scenario, we alternatively change the phases of Rabi frequencies of two classical driving fields, while the second proposal introduces a strongly lossy coupled-cavity system. Both schemes can realize all Lindblad terms required by the dissipative dynamics, guaranteeing the maximally quantum dissonant state to be the unique steady state for a certain subspace of system. Moreover, since the target state is a mixed state, the performance of our method is evaluated by the definition of super-fidelity G(ρ1, ρ2), and the strictly numerical simulations indicate that fidelity outstripping 99% of the quantum dissonant state is achievable with the current cavity quantum electrodynamics parameters.
Compared with the idea of universal quantum computation, a direct synthesis of a multiqubit logic gate can greatly improve the efficiency of quantum information processing tasks. Here we propose an efficient scheme to implement a three-qubit controlled-not (Toffoli) gate of neutral atoms based on unconventional Rydberg pumping. By adjusting the strengths of Rabi frequencies of driving fields, the Toffoli gate can be achieved within one step, which is also insensitive to the fluctuation of the Rydberg-Rydberg interaction. Considering different atom alignments, we can obtain a high-fidelity Toffoli gate at the same operation time ∼7 μs. In addition, our scheme can be further extended to the four-qubit case without altering the operating time.
We propose a method to create selective interactions with Dicke-Stark model by means of a time-dependent perturbation theory. By choosing the proper rotating framework, we find that the time oscillating terms depend on the number of atomic excitations and the number of photonic excitations. Consequently, the Rabi oscillation between selective states can be realized by properly choosing the frequency of the two-level system. The second order selective interactions can also be studied with this method. Then various states, such as Dicke states, superposition of Dicke states and GHZ states, can be created by means of such selective interactions. The numerical results show that high fidelity Dicke states and Greenberger-Horne-Zeilinger states can be created by choosing the proper frequency of the two-level system and controlling the evolution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.