Conventional pervious pavement materials (PPM) consist of cement and aggregate materials and are known for poor durability due to their brittle behavior. Herein, we fabricated polymeric PPMs from durable and abundant polyurethane (PU) to enhance the durability of the material and undertook mechanical and microscopic characterizations. PU-based PPM samples with varying aggregate sizes were produced and the compressive strength and water permeability of each were examined. The pore and tortuosity characteristics of the specimens were analyzed using X-ray micro-computed tomography (micro-CT). Through the micro-CT analysis, the morphological characteristics of the internal structures of PPM were identified and the correlations between the pore size distribution, connectivity, and tortuosity within the specimen were quantitatively analyzed. The microstructures derived from micro-CT were generated as a finite element model and the stress distribution generated inside was numerically determined.
Conventional pervious pavement materials (PPM) that consist of cement and aggregate materials are known for poor durability due to their brittle behavior. Thus, to enhance the durability, we fabricated polymeric PPMs from durable and abundant polyurethane (PU) and undertook mechanical and microscopic characterizations. PU-based PPM samples with varying aggregate sizes were produced and examined to test their compressive strength and water permeability. Furthermore, X-ray micro-computed tomography (micro-CT) was implemented to analyze the samples’ pore and tortuosity characteristics. Through the micro-CT analysis, the morphological characteristics of PPM’s internal structures were identified and quantitively analyzed the correlations between the pore size distribution, connectivity, and tortuosity within the samples. Finally, the microstructures derived from micro-CT were generated as a finite element model and also numerically determined the stress distribution generated inside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.