Water injection with an oscillatory pressure boundary is a promising technology, which can achieve a more economical and environment-friendly EOR (enhanced oil recovery). However, due to the unclear critical injection frequency, its oil production performance has been unstable and is far from reaching the optimal level. Here, a numerical model is established for oil recovery by the water injection with the oscillatory boundary condition to find out the critical frequency for the optimal EOR. The correlations between the water injection frequency and the EOR level at diverse oil–water surface tensions and oil viscosities are integrated into the model. Our numerical model reveals that an optimal EOR of roughly 10% is achieved at the critical water injection frequency compared with water injection without an oscillatory boundary. The EOR mechanism is revealed showing that upon water injection with the optimum frequency, the formation of the preferential pathways is inhibited and the pressure transmits to the wall sides to displace the oil. Moreover, it is indicated that the required critical frequency increases with higher surface tension and larger oil viscosity. In addition, the difference between the residual oil saturation at the optimal frequency increases with the increase in surface tension compared with water injection without an oscillatory boundary. Last but not least, it is elucidated that at a constant injection frequency, a higher EOR is achieved when the water–oil surface tension is lower but the oil viscosity is larger. Our work promises economic, eco-friendly and controllable enhanced oil recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.