Defects and temperature effects on the mechanical properties of hexagonal boron nitride sheet (h-BN) containing randomly distributed defects are investigated by molecular dynamics simulations and the reasons of the results are discussed. Results show that defect deteriorate the mechanical performance of BNNS. The mechanical properties are reduced by increasing percentage of vacancy defects including fracture strength, fracture strain and Young’s modulus. Simulations also indicate that the mechanical properties decrease with the temperature increasing. Moreover, defects affect the stable configuration at high temperature. With the percentage of defect increases the nanostructures become more and more unstable. Positions of the defect influent the mechanical properties. The higher the temperature and the percentage of defect are, the stronger the position of the randomly distributed defect affects the mechanical properties. The study provides a theoretical basis for the preparation and performance optimization of BNNSs.
As a macroscopically orthotropic material, beech wood has different mechanical properties along the fiber direction and the direction perpendicular to the fiber direction, presenting a complicated strain rate sensitivity under impact or blast loadings. To understand the effect of the strain rate on the mechanical properties of beech wood, dynamic compression tests were conducted for the strain rate range of 800 s−1–2000 s−1, and quasi-static compression tests for obtaining the static mechanical properties of beech wood were also performed for comparison. The fiber direction effect on the mechanical properties was also analyzed, considering two loading directions: one perpendicular to the beech fiber direction and the other parallel to the beech fiber direction. The results show that beech wood for both loading directions has a significant strain rate sensitivity, and the mechanical properties of beech wood along the fiber direction are superior to those along the direction perpendicular to the fiber direction. An analysis of the macrostructures and microstructures of beech specimens is also presented to illustrate the failure mechanisms. The beech wood, as a natural protective material, has special dynamic mechanical properties in the aspect of transverse isotropy. This research provides a theoretical basis for application in protective structures.
Boron nitride nanosheets (BNNSs), a new type of wide bandgap nanomaterial, has attracted great attention due to their excellent properties and potential applications. Thus, it is necessary to have a comprehensive understanding of the mechanical properties of BNNSs in various working conditions. This paper presents an analytical model based on molecular mechanics to study the size effect and temperature effect on the Young's modulus of BNNSs. A closedform formulation is derived for Young's modulus as a function of the length of B-N bonds and the out-plane displacement. It is shown that the chirality and the size of the BNNSs affect the length of BN bonds in molecular dynamic (MD) simulations. It is also found that the length of BN bonds and the out-plane displacement in a monolayer BNNS is remarkably temperature dependent. Therefore, the sizes and the temperatures can affect the Young's modulus of BNNSs. The expressions developed in this paper are employed to investigate the Young's modulus for zigzag and armchair BNNS with various sizes and temperatures. The present model, associating with a beam model, provides a simple method to calculate elastic properties which takes into account all bonded energies and force coefficient changes with atoms distance. The results of size effect and temperature effect are in good agreement with data of simulation performed in finite element method (FEM) simulation and MD simulation. The present study provides a molecular mechanics model to predict the Young's modulus of a monolayer BNNS, and the present model may be applied to other two-dimensional (2D) materials in further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.