The main purpose of this paper is to explore the bursting oscillations as well as the mechanism of a parametric and external excitation Filippov type system (PEEFS), in which different types of bursting oscillations such as fold/nonsmooth fold (NSF)/fold/NSF, fold/NSF/fold and fold/fold bursting oscillations can be observed. By employing the overlap of the transformed phase portrait and the equilibrium branches of the generalized autonomous system, the mechanisms of the bursting oscillations are investigated. Our results show that the fold bifurcation and the boundary equilibrium bifurcation (BEB) can cause the transitions between the quiescent states and repetitive spiking states. The oscillating frequencies of the spiking states can be approximated theoretically by their occurring mechanisms, which agree well with the numerical simulations. Furthermore, some nonsmooth evolutions are investigated by employing differential inclusions theory, which reveals that the positional relationship between the points of the trajectory interacting with the nonsmooth boundary and the related sliding boundary of the nonsmooth system may affect the nonsmooth evolutions.
The main purpose of this paper is to study point-cycle type bistability as well as induced periodic bursting oscillations by taking a modified Filippov-type Chua’s circuit system with a low-frequency external excitation as an example. Two different kinds of bistable structures in the fast subsystem are obtained via conventional bifurcation analyses; meanwhile, nonconventional bifurcations are also employed to explain the nonsmooth structures in the bistability. In the following numerical investigations, dynamic evolutions of the full system are presented by regarding the excitation amplitude and frequency as analysis parameters. As a consequence, we can find that the classification method for periodic bursting oscillations in smooth systems is not completely applicable when nonconventional bifurcations such as the sliding bifurcations and persistence bifurcation are involved; in addition, it should be pointed out that the emergence of the bursting oscillation does not completely depend on bifurcations under the point-cycle bistable structure in this paper. It is predicted that there may be other unrevealed slow–fast transition mechanisms worthy of further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.