For prediction of urban remote sensing surface temperature, cloud, cloud shadow and snow contamination lead to the failure of surface temperature inversion and vegetation‐related index calculation. A time series prediction framework of urban surface temperature under cloud interference is proposed in this paper. This is helpful to solve the problem of the impact of data loss on surface temperature prediction. Spatial and temporal variation trends of surface temperature and vegetation index are analyzed using Landsat 7/8 remote sensing data of 2010 to 2019 from Beijing. The geographically weighed regression (GWR) method is used to realize the simulation of surface temperature based on the current date. The deep learning prediction network based on convolution and long short‐term memory (LSTM) networks was constructed to predict the spatial distribution of surface temperature on the next observation date. The time series analysis shows that the NDBI is less than −0.2, which indicates that there may be cloud contamination. The land surface temperature (LST) modeling results show that the precision of estimation using GWR method on impervious surface and water bodies is superior compared to the vegetation area. For LST prediction using deep learning methods, the result of the prediction on surface temperature space distribution was relatively good. The purpose of this study is to make up for the missing data affected by cloud, snow, and other interference factors, and to be applied to the prediction of the spatial and temporal distributions of LST. This article is categorized under: Technologies > Machine Learning
It has become an inevitable trend for medical personnel to analyze and diagnose Alzheimer’s disease (AD) in different stages by combining functional magnetic resonance imaging (fMRI) and artificial intelligence technologies such as deep learning in the future. In this paper, a classification method was proposed for AD based on two different transformation images of fMRI and improved the 3DPCANet model and canonical correlation analysis (CCA). The main ideas include that, firstly, fMRI images were preprocessed, and subsequently, mean regional homogeneity (mReHo) and mean amplitude of low-frequency amplitude (mALFF) transformation were performed for the preprocessed images. Then, mReHo and mALFF images were extracted features using the improved 3DPCANet, and these two kinds of the extracted features were fused by CCA. Finally, the support vector machine (SVM) was used to classify AD patients with different stages. Experimental results showed that the proposed approach was robust and effective. Classification accuracy for significant memory concern (SMC) vs. mild cognitive impairment (MCI), normal control (NC) vs. AD, and NC vs. SMC, respectively, reached 95.00%, 92.00%, and 91.30%, which adequately proved the feasibility and effectiveness of the proposed method.
Alzheimer's disease (AD) is a progressive neurodegenerative disease, which changes the structure of brain regions by some hidden causes. In this paper for assisting doctors to make correct judgments, an improved 3DPCANet method is proposed to classify AD by combining the mean (mALFF) of the whole brain. The main idea includes that firstly, the functional magnetic resonance imaging (fMRI) data is pre-processed, and mALFF is calculated to get the corresponding matrix. Then the features of mALFF images are extracted via the improved 3DPCANet network. Finally, AD patients with different stages are classified using support vector machine (SVM). Experiments results based on public data from the Alzheimer’s disease neuroimaging initiative (ADNI) show that the proposed approach has better performance compared with state-of-the-art methods. The accuracies of AD vs. significant memory concern (SMC), SMC vs. late mild cognitive impairment (LMCI), and normal control (NC) vs. SMC reach respectively 92.42%, 91.80%, and 89.50%, which testifies the feasibility and effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.