As a method for extracting metals and their compounds, hydrometallurgy has the advantages of high comprehensive metal recovery rate, low environmental pollution, and easier production process. The intensive washing process is a key process in the hydrometallurgical process, and the underflow concentration is a key indicator for measuring the quality of the concentrated washing process. In this paper, after analyzing the characteristics of the thick washing process, the hybrid model combining mechanism modeling and error compensation model based on EDO-TELM (three hidden layers Extreme Learning Machine optimized with Entire Distribution Optimization algorithm) is used to achieve accurate measurement of the underflow concentration in the dense washing process. The hybrid model uses the improved EDO-TELM algorithm as an error compensation model to compensate the error of the un-modeled part of the mechanism model, and gives a reasonable estimate of the uncertain part of the model, which theoretically reduce the prediction error of the model. The Matlab simulation results show that the prediction error of the hybrid model is significantly lower than that of the mechanism model and the data model, and can be adapted to the measurement needs of the industrial site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.