Part 1: GIS, GPS, RS and Precision FarmingInternational audienceHyperspectral reflectance of normal and lodged rice caused by rice brown planthopper and rice panicle blast was measured at the canopy level. Over one decade broad- and narrow-band vegetation indices (VIs) were calculated to simulate Landsat ETM+ with in situ hyperspectral reflectance. Principal component analysis (PCA) was utilized to obtain the front two principal components (PCs). Probabilistic neural network (PNN) was employed to classify the lodged and normal rice with VIs and PCs as the input vectors. PCs had 100% of overall accuracy and 1 of Kappa coefficient for the training dataset. While PCs had the greatest average overall accuracy (97.8%) and Kappa coefficient (0.955) for the two testing datasets than VIs consisting of broad- and narrow-bands. The results indicated that hyperspectral remote sensing with PCA and artificial neural networks could potentially be applied to discriminate lodged crops from normal ones at regional and large spatial scales
Part 1: GIS, GPS, RS and Precision FarmingInternational audienceWe designed and implemented an integration framework of enterprise business information and multi-source heterogeneous geospatial information based on composition of semantic geospatial Web service. It can integrate business information and geospatial information seamlessly and effectively in enterprise workflow. An example of tobacco planting spatial analysis this framework was described to verify the practicability and feasibility of this framework
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.