An intermediate node in an inter-flow network coding scheme needs to know exactly which are the previous hop and next hop of a packet before coding. It is difficult to incorporate inter-flow network coding into opportunistic routing (OR) because the next hop of a packet in OR can't be determined in advance. Codingaware opportunistic routing (CAR) is proposed in this paper to address this problem on fixed wireless mesh networks (WMNs). Meanwhile, it aims to maximize the number of native packets coded in each single transmission. It dynamically selects a route for a given flow according to the real-time coding opportunities. There are no control packets in CAR, which greatly reduces the overhead costs. CAR gives the coded packet that consists of a larger number of native packets with a smaller forwarding delay. The forwarder with the largest number of native packets coded together is ultimately selected to send data. Simulations demonstrate that CAR achieves significantly better throughput gains and derives a reasonable end-to-end delay in both cross topology and mesh topology under both transmission control protocol (TCP) and user datagram protocol (UDP) traffic, as explained below. CAR achieves more than 35 % throughput improvement under TCP traffic and more than 15 % throughput improvement under UDP traffic, compared to other state-of-art protocols in cross topology, respectively. CAR also provides a several-fold increase in throughput in a large scale network (mesh topology). In a word, CAR significantly improves network performance of a WMN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.