The solid ducted rocket ramjet (SDR) system faces many disturbances in the process of operation, and the linear active disturbance rejection controller (LADRC) has been widely used in engineering to solve such problems. However, the SDR also has strong nonlinearity, which brings a great challenge to the application of the LADRC in the gas flow regulation of the SDR. And the problem of fast adjustment of the “compensation factor” is one of the main difficulties in LADRC. In this paper, under the LADRC frame, the gas generator system’s closed-loop stability of the SDR was analyzed and the range of compensation factors had been calculated, and then, the “gap factor” was introduced and the “cross-iteration” method was used to quickly map out the “compensation factor” in the multilinear model controller based on the variation of the zero-point position of the system and the gap metric between adjacent set points. This greatly simplifies the parameter tuning process of the LADRC when it was applied to strongly nonlinear systems. Finally, through the comparison of simulation with adaptive PI controller and model-assisted LADRC (M-LADRC), the results have shown that the control method designed in this paper can obtain satisfactory performance and has a good engineering application prospect.
The measurement of the pressure in the gas generator (GG) plays a decisive role in the closed-loop regulation of the gas flow in a solid ducted rocket ramjet (SDR). Therefore, the fault detection and isolation (FDI) of the pressure sensors is particularly significant. Especially in the GG with double pressure feedback, there are issues such as less available data and sensor fault transmission, which make the FDI more difficult. In this paper, for the GG with double pressure feedback, firstly, the “Consistency Index” was constructed based on the principal component analysis (PCA) algorithm, which made it easier to evaluate the consistency of the measured values. Secondly, based on Kalman’s principle, the redundancy information of the system was used to estimate the pressure in the GG. Finally, the gap metric between the measured pressure and the estimated pressure was employed to characterize the health of the sensors. Compared with the MWPCA algorithm, it was shown that our proposed algorithm was more accurate in fault diagnosis and could avoid the problem of missing alarm when two sensors had consistent faults, which would provide strong support for the safe operation of the SDR and could further promote its application in long-endurance aircrafts.
Variable-throat adjustment is the most practical flow regulation method of solid ducted rocket ramjet (SDR). The high-fidelity mathematical model of the interstage valve is the basis for realizing high-precision gas flow and thrust regulation. In this paper, the complex effect of gas was divided into load and throat deformation effect. The load was mainly determined by the clearance, friction torque, and pneumatic torque that the valve was subjected to during operation. And the throat deformation was determined primarily by the deposition and ablation of the valve faced in the gas. Therefore, we could divide the valve model into three parts: the servo motor model, the load characteristic model, and the deformation model of the actual acting throat (referred to as the throat). Given, we have designed a cold-air experiment program, using cold air to equalize the valve load. Furthermore, we analyzed its mechanism of action and established the load model using the experimental data and neural network. Finally, the deformation mechanism of the throat was investigated, and simultaneously, the deformation model was shown based on the flight test data. Compared with the traditional interstage valve model, the model established in this paper is closer to the actual working conditions, which is helpful to carry out the more comprehensive and practical ground simulation. It has essential reference value for further realizing the precise regulation of gas flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.