Cell‐free systems are valuable tools for the dissection of complex cellular processes. Here we show that cytoplasmic extracts from cells exposed to anti‐Fas antibody or UV radiation contain an activity capable of reproducing morphological changes typical of apoptosis in nuclei added to these extracts, as well as internucleosomal cleavage of DNA and proteolysis of a protein known to be cleaved during the apoptosis of intact cells. Extracts from control cell populations were inactive in this respect. These effects were partly blocked by the addition of purified Bcl‐2 protein or a competitive inhibitor peptide of interleukin‐1 beta‐converting enzyme to the extracts. Furthermore, apoptotic activity was induced in cytoplasmic extracts from untreated cells by the addition of ceramide, a lipid second messenger implicated recently in apoptosis signaling. These extracts should prove highly useful in the dissection of molecular events that occur during apoptosis.
Triple-negative breast cancer (TNBC) is a common type of breast malignancy with high a propensity for metastasis and locoregional recurrence. The aim of the present study was to investigate the expression of aquaporin (AQP) 3 and AQP5, analyze their association with clinicopathological parameters and explore their clinical significance in tissue samples from patients with TNBC. Immunohistochemistry was performed to detect the expression patterns of AQP3 and AQP5 in 96 patients with TNBC who underwent surgery between 2007 and 2012. AQP3 and AQP5 were expressed primarily in the membrane and cytoplasm of tumor cells within TNBC tissues. AQP3 and AQP5 expression was notably stronger in carcinoma tissue compared with adjacent normal tissue. Overexpression of AQP3 and AQP5 was significantly associated with tumor size, lymph node status and local relapse/distant metastasis. In addition, aberrant overexpression of AQP5 was observed more frequently in TNBC tissues with higher Ki-67 expression than in those with lower Ki-67 expression. In univariate analysis, patients with TNBC with high AQP3 and AQP5 expression demonstrated poorer 5-year disease-free survival and overall survival compared with patients with low AQP3 and AQP5 expression. In multivariate analysis, the combined expression of AQP3 and AQP5 was an independent prognostic marker in patients with TNBC. The results of the present study suggest that the overexpression of AQP3 and AQP5 may serve as a novel therapeutic marker in patients with TNBC.
In the present study, we investigated the anticancer effects of sodium butyrate (NaBu) on hepatocellular carcinoma (HCC) cells in vitro. As a histone deacetylase (HDAC) inhibitor, NaBu upregulated Ac-H3 and inhibited HDAC4 protein expression in a time- and dose-dependent manner. MTT assays showed that treatment with NaBu at high concentrations significantly inhibited the growth of various HCC cells. Exposure to NaBu for 24 h induced cell cycle arrest in the SMMC-7721 and HepG2 cells. NaBu also induced the apoptosis of SMMC‑7721 cells. The expression levels of cell cycle- and apoptosis-related proteins were further investigated by western blot analysis using specific antibodies. The results provided a possible mechanism responsible for the inhibitory effects of NaBu on the growth of HCC cells. To further analyze the role of NaBu in cell migration, wound healing and Transwell assays were performed, indicating that NaBu significantly inhibits cell migration/invasion in HCC cells. Transforming growth factor-β1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) has been associated with tumor cell migration and invasion. The EMT markers, E-cadherin, vimentin and N-cadherin, were regulated by TGF-β1, while NaBu inhibited this process in which HDAC4 and matrix metalloproteinase (MMP)7 may be involved. Based on our findings, we propose that NaBu may be useful as an anticancer drug for HCC therapy.
Colorectal cancer, one of the most commonly diagnosed and lethal cancers worldwide, is accompanied by the disorders of immune system. However, the underlying mechanism is still not fully understood. In this study, our goal was to determine whether interleukin 33 promotes tumorigenesis and progression of colorectal cancer through increased recruitment of tumor-infiltrating ST2+ regulatory T cells in CT26 tumor-bearing mice. We found that the mRNA or protein levels of interleukin 33, soluble ST2, and membrane ST2 were elevated in the serum of tumor-bearing mice when compared to WT mice. The mRNA levels of interleukin 33, soluble ST2, and membrane ST2 were also elevated in the tissue of tumor-bearing mice when compared to surrounding nontumor muscular tissues. In addition, the frequency of ST2L+ regulatory T cells was significantly increased in both tumor tissue and spleen of tumor-bearing mice. Higher protein levels of interleukin-4, -10, and -13 were also observed in the serum or the tumor homogenates of tumor-bearing mice. We found exogenously administered recombinant mouse interleukin 33 promoted tumor size and induced tumor-infiltrating ST2L+ regulatory T cells in tumor-bearing mice while neutralizing interleukin-33 or ST2L inhibited tumor size and decreased ST2L+ regulatory T cells. Furthermore, ST2L+ regulatory T cells from tumor tissue were also able to suppress CD4+CD25−T cell proliferation and interferon γ production. Altogether, our findings demonstrate the critical roles of interleukin 33 in promoting colorectal cancer development through inducing tumor-infiltrating ST2L+ regulatory T cells, and inhibition of interleukin-33/ST2L signaling maybe a potential target for the prevention of colorectal cancer.
Loss of intestinal epithelial barrier function including typical tight junction changes and epithelial cell apoptosis plays an important role in Crohn's disease. SEW2871, a selective sphingosine-1-phosphate type-1 receptor agonist, has been proven to be efficient in protecting against colitis in IL-10(-/-) mice in our previous study. Here we performed additional studies to investigate whether treatment with SEW2871 was associated with an improved epithelial barrier function in IL-10(-/-) mice. SEW2871 was administered by gavage at a dose of 20 mg/kg/day for 2 weeks to IL-10(-/-) mice. Severity of colitis, CD4+ T cells in colon lamina propria and proinflammatory cytokine productions were evaluated. Furthermore, intestinal permeability, tight junction (occludin and ZO-1) expressions and distributions, as well as epithelial cell apoptosis, were also assessed. SEW2871 treatment attenuated established colitis associated with decreased CD4+ T cells in colon lamina propria and reduced TNF-α and IFN-γ levels. Moreover, enhanced barrier function, which resulted from ameliorated tight junction (occludin and ZO-1) expressions and suppressed epithelial cell apoptosis, was found to contribute to the therapeutic effects. SEW2871 treatment protects from colitis in IL-10(-/-) mice through reduced epithelial cell apoptosis and improved barrier function. Thus, targeting sphingosine-1-phosphate may represent a new therapeutic approach in Crohn's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.