We show that reproductively mature male sea lampreys release a bile acid that acts as a potent sex pheromone, inducing preference and searching behavior in ovulated female lampreys. The secreted bile acid 7alpha,12alpha,24-trihydroxy-5alpha-cholan-3-one 24-sulfate was released in much higher amounts relative to known vertebrate steroid pheromones and may be secreted through the gills. Hence, the male of this fish species signals both its reproductive status and location to females by secreting a pheromone that can act over long distances.
In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.all-carbon molecular junction | attenuation coefficient | field ionization | strong electronic coupling C harge transport mechanisms in organic and molecular electronics underlie the ultimate functionality of a new generation of electronic devices. Understanding, controlling, and designing molecular devices for use as practical components requires an intimate knowledge of the system energy levels and operative transport mechanisms, and how key variables such as molecule length, identity, temperature, etc., affect device performance parameters. Especially interesting in this context is the relationship between organic electronic devices, which typically have active layer thicknesses of tens to hundreds of nanometers, and molecular electronic devices reported to date, in which at least one dimension for charge propagation is below 10 nm. Indeed, many types of functional organic electronic devices have been demonstrated, including thinfilm transistors, organic light-emitting diodes, and memory cells (1, 2). Bridging the gap between organic and molecular devices may therefore reveal pathways for improving the performance of such devices, or even lead to new types of devices based on alternative transport mechanisms.The great majority of molecular electronic devices investigated to date have transport distances of <5 nm between the contacts, where the prevalent transport mechanism is quantum-mechanical tunneling. For this distance range, there is general agreement that the conductance scales exponentially with length, with an attenuation coefficient (β), defined as the slope of ln J vs. thickness (d), equal to 8 to 9 nm −1 for aliphatic molecules (3-6) and 2-3 nm −1 for aromatic molecules (7)(8)(9)(10)(11)(12)(13)(14). A few molecular electronic systems have been investigated beyond 5 nm (15, 16), some of which exhibit a decrease in β to less than 1 nm −1 . Such small values of β ar...
Molecular junctions are essentially modified electrodes familiar to electrochemists where the electrolyte is replaced by a conducting "contact." It is generally hypothesized that changing molecular structure will alter system energy levels leading to a change in the transport barrier. Here, we show the conductance of seven different aromatic molecules covalently bonded to carbon implies a modest range (<0.5 eV) in the observed transport barrier despite widely different free molecule HOMO energies (>2 eV range). These results are explained by considering the effect of bonding the molecule to the substrate. Upon bonding, electronic inductive effects modulate the energy levels of the system resulting in compression of the tunneling barrier. Modification of the molecule with donating or withdrawing groups modulate the molecular orbital energies and the contact energy level resulting in a leveling effect that compresses the tunneling barrier into a range much smaller than expected. Whereas the value of the tunneling barrier can be varied by using a different class of molecules (alkanes), using only aromatic structures results in a similar equilibrium value for the tunnel barrier for different structures resulting from partial charge transfer between the molecular layer and the substrate. Thus, the system does not obey the Schottky-Mott limit, and the interaction between the molecular layer and the substrate acts to influence the energy level alignment. These results indicate that the entire system must be considered to determine the impact of a variety of electronic factors that act to determine the tunnel barrier.energy alignment | molecular electronics | electronic coupling | charge transport | Fermi-level pinning T he conductance of electrical charge through and across molecular entities is the basis of molecular and organic electronics (1, 2). Understanding, controlling, and designing electronic circuits using organic molecules as components is a major goal of molecular electronics (3); however, it has been a challenge to identify all of the factors that govern the conductance of a molecular junction. Rather than being a simple property of the molecule itself, many circumstances contribute to the measured electronic properties of the junction. Some of the important features include the nature of the molecule-contact bonding (4), the properties of the contact materials (5, 6), the orientation of the molecules relative to the contacts (7), and the structure of the molecule (5,8,9). Although there is no general consensus on exactly how each of these features affects the conductance of the junction, it is generally agreed that the alignment of the molecular and contact energy levels is an important factor (10-13). The offset between the substrate Fermi energy (E f ) and the molecular orbital closest in energy to E f is often used to estimate charge transport barriers in the context of tunneling or charge injection models; however, it is increasingly clear that the situation is complex and that there is no simple meth...
HPPK-HP-MgAMPCPP mimics most closely the natural ternary complex of HPPK and provides details of protein-substrate interactions. The coordination of the two Mg(2+) ions helps create the correct geometry for the one-step reaction of pyrophosphoryl transfer, for which we suggest an in-line single displacement mechanism with some associative character in the transition state. The rigidity of the adenine-binding pocket and hydrogen bonds are responsible for adenosine specificity. The nonconserved residues that interact with the substrate might be responsible for the species-dependent properties of an isozyme.
Background:The methylerythritol phosphate (MEP) pathway is required for the biosynthesis of plastid-derived isoprenoids from plants. Results: Deoxyxylulose-5-phosphate synthase (DXS) was cloned from Populus trichocarpa, and metabolic regulation was tested. Conclusion: Both isopentenyl diphosphate and dimethylallyl diphosphate inhibit DXS by competing with thiamine pyrophosphate. Significance: Prediction of isoprene emission from trees and bioengineering of MEP pathway will be aided by these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.