Geopolymer recycled aggregate concrete (GRAC) was prepared by replacing cement with geopolymer and natural aggregate with waste concrete. The effect of the water-glass module on the mechanical properties of GRAC was studied. It was found that water-glass has a double-layer structure. The low module water-glass leads to a thicker diffusion layer and more Na+ and OH− in the solution, which activates more CaO, SiO2, and Al2O3 in the raw material, and improves the strength of GRAC. Moreover, two kinds of gel structures, namely layered C-A-S-H (calcium silicate hydrate) and networked N-A-S-H (zeolite), were found in the products of geopolymer. As the water-glass module changed, the phase of zeolite changed significantly, whereas the calcium silicate hydrate did not change, indicating that the decrease in the water-glass module contributes to the formation of more N-A-S-H gel. The compressive strengths of GRAC with the sizes of 200, 150, and 100 mm3 were in line with Bazant’s size effect theoretical curve. Through the segmented fitting method, the relationship of the size conversion coefficient of GRAC (α), the critical strength (fcr), the critical dimension (Dcr), and the water-glass module (ε) were determined. It was found that ε = 1.5 is the segmented point of the three equations. The elastic modulus and peak stress of GRAC are inversely proportional to the water-glass module, and the peak strain is proportional to the water-glass module, indicating that by reducing the water-glass module, the strength of GRAC can be improved, but the brittleness is increased. The constitutive equation of GRAC with only the water-glass module as a variable was also established. It was found that the polynomial mathematical model and rational fraction mathematical model are optimal for the rising-stage and falling-stage, respectively, and the relationship between the parameters of the rising-stage (a) and the falling-stage (b), and the water-glass module, is given.
In this study, we explore a new method based on color variation data to derive the kinetics of the entire process of the hydration of alkali-activated slag (AAS). Using this image analysis technique, we can monitor the induction period that cannot be observed using conventional microcalorimetry techniques. Color variation was recorded across a sequence of 9999 images, which were processed via MATLAB software package. Further, an average pixel value (APV) was determined to represent the color in each image. Reaction parameters, such as color variation velocity v(t), reaction speed ε(t), and hydration degree α(t), that govern the entire hydration process were determined. On the basis of the reaction parameters and a Krstulovic–Dabic kinetic model, integral and differential equations were derived to simulate the three basic processes of AAS hydration. Equations describing the reaction kinetics of AAS with solutions of three different concentrations of NaOH were extracted using this method.
Four different size of concrete cube (70 mm3, 100 mm3, 150 mm3, and 200 mm3) of geopolymer recycled aggregate concrete (GRAC) were prepared by replacing cement with geopolymer and natural aggregate with wast concrete. The effect of oxide molar ratio of raw material on compressive strength and its size effect of GRAC was studied.The results show the size conversion coefficient of GRAC cannot adopt the values from the current national standard GB/T50081. The relationship of size conversion coefficient α and oxide molar ratio ε of GRAC was worked out. It was found that the compressive strength of GRAC of all sizes were in line with the Bazant’s size theory. Oxide molar ratio on critical size and critical value of GRAC were calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.