Fire Spread Rate (FSR) can indicate how fast a fire is spreading, which is especially helpful for wildfire rescue and management. Historically, images obtained from sun-orbiting satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS) were used to detect active fire and burned area at the large spatial scale. However, the daily revisit cycles make them inherently unable to extract FSR in near real-time (hourly or less). We argue that the Himawari-8, a next generation geostationary satellite with a 10-min temporal resolution and 0.5–2 km spatial resolution, may have the potential for near real-time FSR extraction. To that end, we propose a novel method (named H8-FSR) for near real-time FSR extraction based on the Himawari-8 data. The method first defines the centroid of the burned area as the fire center and then the near real-time FSR is extracted by timely computing the movement rate of the fire center. As a case study, the method was applied to the Esperance bushfire that broke out on 17 November, 2015, in Western Australia. Compared with the estimated FSR using the Commonwealth Scientific and Industrial Research Organization (CSIRO) Grassland Fire Spread (GFS) model, H8-FSR achieved favorable performance with a coefficient of determination (R2) of 0.54, mean bias error of –0.75 m/s, mean absolute percent error of 33.20% and root mean square error of 1.17 m/s, respectively. These results demonstrated that the Himawari-8 data are valuable for near real-time FSR extraction, and also suggested that the proposed method could be potentially applicable to other next generation geostationary satellite data.
As one of the important coastal cities in China, Tianjin has been urbanized dramatically over the past 40 years, and the urbanization rate has been up to 83.15% by 2018. In this study, we used the Continuous Change Detection and Classification (CCDC) algorithm to comprehensively understand the urban expansion processes in Tianjin based on the Landsat Time Series (LTS) from 1985 to 2018 with 30-meter resolution. Specially, we applied the c-factor approach with the RossThick-LiSparse-R model to correct the Bidirectional Reflectance Distribution Function (BRDF) effect for each Landsat image and calculated a spatial line-density feature for improving the change detection and the classification. Based on the study in Tianjin, we found that BRDF correction can substantially improve the change detection (9.00% higher overall accuracy) and classification (1.08% higher overall accuracy); and the line-density is also beneficial to classification (0.48% higher overall accuracy), especially for impervious surface (1.70% less commission errors and 1.49% less omission errors). By analyzing the imperious surface change processes, we observed that Tianjin has undergone rapid urban expansion in the past decades, and the urban area was mainly transformed from cropland around the central area before 2005 and later from the coast.
Forest fires can destroy forest and inflict great damage to the ecosystem. Fortunately, forest fire detection with video has achieved remarkable results in enabling timely and accurate fire warnings. However, the traditional forest fire detection method relies heavily on artificially designed features; CNN-based methods require a large number of parameters. In addition, forest fire detection is easily disturbed by fog. To solve these issues, a lightweight YOLOX-L and defogging algorithm-based forest fire detection method, GXLD, is proposed. GXLD uses the dark channel prior to defog the image to obtain a fog-free image. After the lightweight improvement of YOLOX-L by GhostNet, depth separable convolution, and SENet, we obtain the YOLOX-L-Light and use it to detect the forest fire in the fog-free image. To evaluate the performance of YOLOX-L-Light and GXLD, mean average precision (mAP) was used to evaluate the detection accuracy, and network parameters were used to evaluate the lightweight effect. Experiments on our forest fire dataset show that the number of the parameters of YOLOX-L-Light decreased by 92.6%, and the mAP increased by 1.96%. The mAP of GXLD is 87.47%, which is 2.46% higher than that of YOLOX-L; and the average fps of GXLD is 26.33 when the input image size is 1280 × 720. Even in a foggy environment, the GXLD can detect a forest fire in real time with a high accuracy, target confidence, and target integrity. This research proposes a lightweight forest fire detection method (GXLD) with fog removal. Therefore, GXLD can detect a forest fire with a high accuracy in real time. The proposed GXLD has the advantages of defogging, a high target confidence, and a high target integrity, which makes it more suitable for the development of a modern forest fire video detection system.
Rice false smut (RFS), caused by Ustilaginoidea virens, is a significant grain disease in rice that can lead to reduced yield and quality. In order to obtain spatiotemporal change information, multitemporal hyperspectral UAV data were used in this study to determine the sensitive wavebands for RFS identification, 665–685 and 705–880 nm. Then, two methods were used for the extraction of rice false smut-infected areas, one based on spectral similarity analysis and one based on spectral and temporal characteristics. The final overall accuracy of the two methods was 74.23 and 85.19%, respectively, showing that the second method had better prediction accuracy. In addition, the classification results of the two methods show that the areas of rice false smut infection had an expanding trend over time, which is consistent with the natural development law of rice false smut, and also shows the scientific nature of the two methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.