Bottlebrush random copolymers (BRCPs), having randomly distributed hydrophilic and hydrophobic side chains, are shown to reconfigure into hydrophilic-rich and hydrophobic-rich conformations at liquid-liquid interfaces to reduce interfacial energy. Both the degree of polymerization (N BB ) and extent of grafting in these BRCPs were found to impact surface coverage and assembly kinetics. The time-dependence of the interfacial tension is described as the sum of two exponential relaxation functions characterizing BRCP diffusion, interfacial adsorption, and reorganization. Interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) results showed that higher molecular weight BRCPs require longer time to adsorb to the water-oil interface, but less time for interfacial reorganization. Overall, this work describes fundamental principles of BRCP assembly at liquid-liquid interfaces, with implications pertaining to polymer design with enhanced understanding of emulsification, adhesion, and related properties in fluids and at interfaces.
This article is dedicated to Rudolf Zentel in honor of his significant contributions to the fields of polymer chemistry, nanoscience, and polymeric biomaterials, as well as his promotion of international scientific collaboration and student exchange.Polymer zwitterions continue to emerge as useful materials for numerous applications, ranging from hydrophilic and antifouling coatings to electronic materials interfaces. While several polymer zwitterion compositions are now well established, interest in this field of soft materials science has grown rapidly in recent years due to the introduction of new structures that diversify their chemistry and architecture. Nonetheless, at present, the variation of the chemical composition of the anionic and cationic components of zwitterionic structures remains relatively limited to a few primary examples. In this article, the versatility of 4-vinylbenzyl sultone as a precursor to ammonium sulfonate zwitterionic monomers, which are then used in controlled free radical polymerization chemistry to afford "inverted sulfobetaine" polymer zwitterions, is highlighted. An evaluation of the solubility, interfacial activity, and solution configuration of the resultant polymers reveals the dependence of properties on the selection of tertiary amines used for nucleophilic ring-opening of the sultone precursor, as well as useful properties comparisons across different zwitterionic compositions.
Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid−fluid interface. The ratio between N BB (backbone degree of polymerization) and N SC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when N BB < N SC , but decreases when N BB ≫ N SC , correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as N BB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher N BB . Euler buckling of BPS assemblies with different N BB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for N BB < N SC , but increased when N BB ≫ N SC , showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower N BB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.
Research involving polymer zwitterions typically involves the preparation of ammonium-based structures and their study as coatings or gels that impart hydrophilicity and/or antifouling properties to substrates and materials. More recent synthetic advances have produced a significant expansion in polymer zwitterion chemistry, especially with respect to the composition of the cationic moieties that open new possibilities to examine polymer zwitterions as amphiphiles, functional surfactants, and components of complex emulsions. This article describes the synthesis of new zwitterionic sulfonium sulfonate monomers and their use as starting materials in controlled free radical polymerization to yield the corresponding polymers. These novel polymer zwitterions bear sulfonium sulfonate groups, that possess an inverted dipole directionality relative to prior examples that yields different and unexpected physical and chemical properties. For example, the polymer zwitterions described here are soluble in a wide range of nonaqueous solvents and possess significantly greater stability against nucleophiles relative to their dipole-inverted counterparts. Additionally, the amphiphilic character of these sulfonium sulfonate polymers makes them amenable to use as surfactants for stabilizing oil-in-water emulsions, a feature that is not possible using conventional ultrahydrophilic polymer zwitterions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.