The vital roles of microtubule in mitosis and cell division make it an attractive target for antitumor therapy. Colchicine binding site of tubulin is one of the most important pockets that have been focused on to design tubulin-destabilizing agents. Over the past few years, a large number of colchicine binding site inhibitors (CBSIs) have been developed inspired by natural products or synthetic origins, and many moieties frequently used in these CBSIs are structurally in common. In this review, we will classify the CBSIs into classical CBSIs and nonclassical CBSIs according to their spatial conformations and binding modes with tubulin, and highlight the privileged structures from these CBSIs in the development of tubulin inhibitors targeting the colchicine binding site.
A series of novel quinoline-chalcone derivatives were designed, synthesized and evaluated for their antiproliferative activity. Among them, compound 24d exhibited the most potent activity with IC50 values ranging from 0.009 to 0.016 μM in a panel of cancer cell lines. Compound 24d also displayed a good safety profile with LD50 value of 665.62 mg/kg by intravenous injection, and its hydrochloride salt 24d-HCl significantly inhibited tumor growth in H22 xenograft models without observable toxic effects, which was more potent than that of CA-4. Mechanism studies demonstrated that 24d bound to the colchicine site of tubulin, arrested cell cycle at the G2/M phase, induced apoptosis, depolarized mitochondria and induced reactive oxidative stress (ROS) generation in K562 cells. Moreover, 24d has potent in vitro anti-metastasis, in vitro and in vivo anti-vascular activities. Collectively, our findings suggest that 24d deserves to be further investigated as a potent and safe anti-tumor agent for cancer therapy.
Clinical investigations have shown that a nonimmunogenic “cold” tumor is usually accompanied by few immunopositive cells and more immunosuppressive cells in the tumor microenvironment (TME), which is still the bottleneck of immune activation. Here, a fluorine assembly nanocluster was explored to break the shackles of immunosuppression, reawaken the immune system, and turn the cold tumor “hot.” Once under laser irradiation, FS@PMPt produces sufficient reactive oxygen species (ROS) to fracture the ROS-sensitive linker, thus releasing the cisplatin conjugated PMPt to penetrate into the tumors and kill the regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Meanwhile, ROS will induce potent immunogenic cell death (ICD) and further promote the accumulation of dendritic cells (DCs) and T cells, therefore not only increasing the infiltration of immunopositive cells from the outside but also reducing the immunosuppressive cells from the inside to break through the bottleneck of immune activation. The FS@PMPt nanocluster regulates the immune process in TME from negative to positive, from shallow to deep, to turn the cold tumor into a hot tumor and provoke a robust antitumor immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.