This paper presents a model-free reinforcement learning (RL) algorithm for infinite-horizon average-reward Constrained Markov Decision Processes (CMDPs). Considering a learning horizon K, which is sufficiently large, the proposed algorithm achieves sublinear regret and zero constraint violation. The bounds depend on the number of states S, the number of actions A, and two constants which are independent of the learning horizon K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.