Epithelial gene expression in the lung is thought to be regulated by the coordinate activity of several different families of transcription factors including the Fox family of winged-helix/forkhead DNA-binding proteins. In this report, we have identified and characterized two members of this Fox gene family, Foxp1 and Foxp2, and show that they comprise a new subfamily of Fox genes expressed in the lung. Foxp1 and Foxp2 are expressed at high levels in the lung as early as E12.5 of mouse development with Foxp2 expression restricted to the airway epithelium. In addition, Foxp1 and Foxp2 are expressed at lower levels in neural, intestinal, and cardiovascular tissues during development. Upon differentiation of the airway epithelium along the proximal-distal axis, Foxp2 expression becomes restricted to the distal alveolar epithelium whereas Foxp1 expression is observed in the distal epithelium and mesenchyme. Foxp1 and Foxp2 can regulate epithelial lung gene transcription as was demonstrated by their ability to dramatically repress the mouse CC10 promoter and, to a lesser extent, the human surfactant protein C promoter. In addition, GAL4 fusion proteins encoding subdomains of Foxp1 and Foxp2 demonstrate that an independent and homologous transcriptional repression domain lies within the N-terminal end of the proteins. Together, these studies suggest that Foxp1 and Foxp2 are important regulators of lung epithelial gene transcription.The mouse lung arises from the laryngo-tracheal groove in the primitive foregut at approximately gestational day 9.5 (E9.5) of mouse development (for review see Refs. 1 and 2). Further development through a process termed branching morphogenesis results in a primitive epithelial lined tubular structure by E12.5. Additional differentiation of this primitive epithelial lining along the proximal-distal axis during the pseudoglandular stage of development results in highly differentiated airway epithelial cells capable of surfactant protein expression and gas exchange essential for postnatal lung function. The molecular mechanisms regulating the process of branching morphogenesis and proximal-distal patterning of the lung epithelium are poorly understood. However, recent reports have indicated that lung-specific gene expression is regulated at the level of transcription (reviewed in Refs. 1 and 2). Several transcription factors have been implicated in this transcriptional program including the homeodomain protein Nkx2.1/TTF-1, the zinc-finger transcription factor GATA-6, and members of the winged-helix/forkhead (Fox) family of transcription factors (3-10).The Fox family of transcription factors is a large group of proteins that share a common DNA binding domain termed a winged-helix or forkhead domain after the founding member of this group, the forkhead gene in Drosophila (for review see Ref. 11). Several Fox genes are expressed in the lung and have been implicated as important regulators of lung gene transcription including Foxa1, Foxa2, Foxf1, Foxf2, and Foxj1. These Fox family members are ...
In this study, we describe the isolation and characterization of Foxp4, a new member of the Foxp subfamily of winged-helix transcription factors. The full-length mouse Foxp4 cDNA encodes a 685-amino-acid protein that is similar to Foxp1 and Foxp2. Foxp4 gene expression is observed primarily in pulmonary, neural, and gut tissues during embryonic development. To compare the protein expression patterns of Foxp4 to Foxp1 and Foxp2, specific polyclonal antisera to each of these proteins was used in immunohistochemical analysis of mouse embryonic tissues. All three proteins are expressed in lung epithelium with Foxp1 and Foxp4 expressed in both proximal and distal airway epithelium while Foxp2 is expressed primarily in distal epithelium. Foxp1 protein expression is also observed in the mesenchyme and vascular endothelial cells of the lung. At embryonic day 12.5, Foxp1 and Foxp2 are expressed in both the mucosal and epithelial layers of the intestine. However, Foxp2 is expressed only in the outer mucosal layer of the intestine and stomach later in development. Finally, Foxp4 is expressed exclusively in the epithelial cells of the developing intestine, where, in late development, it is expressed in a gradient along the longitudinal axis of the villi.
The proximal-distal patterning of lung epithelium involves a complex series of signaling and transcriptional events resulting in the programmed differentiation of highly specialized cells for gas exchange and surfactant protein expression essential for postnatal lung function. The BMP signaling pathway has been shown to regulate cellular differentiation in the lung as well as other tissues. In this report, we show that the can family of related BMP antagonists, including gremlin, cer-1, PRDC, and Dan are expressed in the lung during embryonic development with gremlin expression observed in the proximal airway epithelium. The role of gremlin in lung development was explored by overexpressing it in the distal lung epithelium of transgenic mice using the human SP-C promoter. SP-C/gremlin transgenic mice exhibited a disruption of the proximal-distal patterning found in the airways of the mammalian lung. Expanded expression of the proximal epithelial cell markers CC10 and HFH-4 (Foxj1) was observed in the distal regions of transgenic lungs. Furthermore, smooth muscle ␣-actin expression was observed surrounding the distal airways of SP-C/gremlin mice, indicating a proximalization of distal lung tubules. These data suggest that gremlin plays an important role in lung morphogenesis by regulating the proximal-distal patterning of the lung during development.
GATA6 is a member of the GATA family of zinc-finger transcriptional regulators and is the only known GATA factor expressed in the distal epithelium of the lung during development. To define the role that GATA6 plays during lung epithelial cell development, we expressed a GATA6-Engrailed dominant-negative fusion protein in the distal lung epithelium of transgenic mice. Transgenic embryos lacked detectable alveolar epithelial type 1 cells in the distal airway epithelium. These embryos also exhibited increased Foxp2 gene expression, suggesting a disruption in late alveolar epithelial differentiation. Alveolar epithelial type 2 cells, which are progenitors of alveolar epithelial type 1 cells, were correctly specified as shown by normal thyroid transcription factor 1 and surfactant protein A gene expression. However, attenuated endogenous surfactant protein C expression indicated that alveolar epithelial type 2 cell differentiation was perturbed in transgenic embryos. The number of proximal airway tubules is also reduced in these embryos, suggesting a role for GATA6 in regulating distal-proximal airway development. Finally, a functional role for GATA factor function in alveolar epithelial type 1 cell gene regulation is supported by the ability of GATA6 to trans-activate the mouse aquaporin-5 promoter. Together, these data implicate GATA6 as an important regulator of distal epithelial cell differentiation and proximal airway development in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.