Exosomes are small extracellular vesicles that are released from cells and that function in intercellular communication. Recently, interferon-inducible transmembrane protein 3 (IFITM3) has been identified as a highly effective anti-intracellular pathogen protein that can inhibit the invasion of a wide range of pathogenic microorganisms. However, whether Brucella infection induces secretion of exosomes and whether these exosomes contain IFITM3 protein remain unknown. Here, we focused on the immune function of extracellular IFITM3 protein in the process of Brucella infection. This study is the first to show that Brucella melitensis strain M5 (Brucella M5) can stimulate macrophages to secrete large amounts of exosomes. Most importantly, we identified exosomes from Brucella M5-infected cells that were rich in molecules of IFITM3, and these exosomes could transmit the IFITM3 from one cell to another, thereby effectively inhibiting the intracellular survival of Brucella. Moreover, immunization with exosomes carrying IFITM3 decreased mouse spleen tissue damage and spleen colony forming unit (CFU), leading to the establishment of an anti-Brucella state in mice. In conclusion, our findings provide new insights into the anti-Brucella mechanism of IFITM3-containg exosomes, thus providing a theoretical foundation for systematic elaboration of the mechanisms of Brucella infection and host immunity. The results provide new ideas for the development of candidate vaccines for Brucella.
Background Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes , such as growth, virulence, and biofilm formation. Objectives To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods In this study, lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD 50 ) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes , reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes . These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes .
Brucellosis, caused by Brucella spp., is one of the most widespread bacterial zoonoses worldwide. Vaccination is still considered the best way to control brucellosis. An investigation into the differential proteome expression patterns of wild and vaccine strains may help researchers and clinicians differentiate between the strains to diagnose and better understand the mechanism(s) underlying differences in virulence. In the present study, a mass spectrometry-based, label-free relative quantitative proteomics approach was used to investigate the proteins expressed by the wild strain, B. melitensis biovar 3 and compare it with those expressed by B. melitensis M5-90. The higher level of virulence for B. melitensis biovar 3 compared to B. melitensis M5-90 was validated in vitro and in vivo. A total of 2133 proteins, encompassing 68% of the theoretical proteome, were identified and quantified by proteomic analysis, resulting in broad coverage of the B. melitensis proteome. A total of 147 proteins were identified as differentially expressed (DE) between these two strains. In addition, 9 proteins and 30 proteins were identified as unique to B. melitensis M5-90 and B. melitensis biovar 3, respectively. Pathway analysis revealed that the majority of the DE proteins were involved in iron uptake, quorum sensing, pyrimidine metabolism, glycine betaine biosynthetic and metabolic processes, thiamine-containing compound metabolism and ABC transporters. The expression of BtpA and VjbR proteins (two well-known virulence factors) in B. melitensis biovar 3 was 8-fold and 2-fold higher than in B. melitensis M5-90. In summary, our results identified many unique proteins that could be selected as candidate markers for differentiating vaccinated animals from animals with wild-type infections. BtpA and VjbR proteins might be responsible for the residual virulence of B. melitensis M5-90, while ABC transporters and thiamine metabolism associated proteins may be newly identified Brucella virulence factors. All of the identified DE proteins provide valuable information for the development of vaccines and the discovery of novel therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.