An efficient method for intermolecular branch-selective allylic C-H amidation has been accomplished via Ir(III) catalysis. The reaction proceeds through initial allylic C-H activation, supported by the isolation and crystallographic characterization of an allyl-Ir(III) intermediate, followed by a subsequent oxidative amidation with readily available dioxazolones as nitrenoid precursors. A diverse range of amides are successfully installed at the branched position of terminal alkenes in good yields and regioselectivities. Importantly, the reaction allows the use of amide-derived nitrenoid precursors avoiding problematic Curtius-type rearrangements.
The total synthesis of the tunicate metabolite mandelalide A and the correction of its originally assigned stereochemistry are reported. Key features of the convergent, fully stereocontrolled route include the use of a Prins cyclization for the diastereoselective construction of the tetrahydropyran subunit, Rychnovsky-Bartlett cyclization for the preparation of the tetrahydrofuran moiety, Suzuki coupling, Horner-Wadsworth-Emmons macrocyclization, and glycosylation to append the L-rhamnose-derived pyranoside.
C–H activation reactions enable chemists to unveil new retrosynthetic disconnections and streamline conventional synthetic approaches. A longstanding challenge in C–H activation is the inability to distinguish electronically and sterically similar C–H bonds. Although numerous synergistic combinations of transition-metal complexes and chelating directing groups have been utilized to distinguish C–H bonds, undirected regioselective C–H functionalization strategies remain elusive. Herein, we report a regioselective C–H activation/amination reaction of various unsymmetrical dialkyl-substituted alkenes. The regioselectivity of C–H activation is correlated to the electronic properties of allylic C–H bonds indicated by the corresponding
1
J
CH
coupling constants. A linear relationship between the difference of
1
J
CH
coupling constants of the two competing allylic C–H bonds (Δ
1
J
CH
) and the C–H activation barriers (ΔΔG
‡
) has also been determined.
An intramolecular Ir(III)-catalyzed regiodivergent oxyamination of unactivated alkenes provides valuable γ-lactams, γ-lactones and δ-lactams. The regioselectivity is controlled by the electronically tunable cyclopentadienyl Ir(III)-complexes enabling oxyamination via either 5-exo or 6-endo pathways. With respect to the mechanism, we propose a highly reactive [3.1.0] bicycle intermediate derived from Ir(V) nitrene-mediated aziridination to be a key intermediate toward the synthesis of γlactams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.