Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.
Decision Tree is widely applied in many areas, such as classification and recognition. Traditional information entropy and Pearson’s correlation coefficient are often applied as measures of splitting rules to find the best splitting attribute. However, these methods can not handle uncertainty, since the relation between attributes and the degree of disorder of attributes can not be measured by them. Motivated by the idea of Deng Entropy, it can measure the uncertain degree of Basic Belief Assignment (BBA) in terms of uncertain problems. In this paper, Deng entropy is used as a measure of splitting rules to construct an evidential decision tree for fuzzy dataset classification. Compared to traditional combination rules used for combination of BBAs, the evidential decision tree can be applied to classification directly, which efficiently reduces the complexity of the algorithm. In addition, the experiments are conducted on iris dataset to build an evidential decision tree that achieves the goal of more accurate classification.
Dempster‐Shafer is widely used to address the problems of uncertainty. One assumption mentioned in this theory is that the distribution of information should be independent. In practice, the requirement cannot be fulfilled. One of the efficient methods to deal with dependent evidence is to calculate the correlation discounting. However, existing coefficient can only be applied to show the direct relation between evidence A and B but do not take the indirect relationship into consideration. To address this issue, in this paper, a new method to combine dependent evidence based on decision‐making trial and evaluation laboratory is presented, not only considering the relation between evidence A and B and the relation between evidence B and C, but also considering the transitive influence between evidence A and C. Finally, the experiments on some benchmark data sets are illustrated to show the efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.