Although additive manufacturing (AM) has been maturing for some years, it has only recently started to capture the interest of the cost-sensitive construction industry. The research presented herein is seeking to integrate AM into the construction sector through the establishment of an automated end-to-end framework for the generation of high-performance AM structures, combining sophisticated optimization techniques with cutting edge AM methods. Trusses of tubular cross-section subjected to different load cases have been selected as the demonstrators of the proposed framework. Optimization studies, featuring numerical layout and geometry optimization techniques, are employed to obtain the topology of the examined structures, accounting for practical and manufacturing constraints. Cross-section optimization is subsequently undertaken, followed by a series of geometric operations for the design of free-form joints connecting the optimized members. Solid models of the optimized designs are then exported for wire arc additive manufacturing (WAAM). Following determination of the optimal printing sequence, the trusses are printed and inspected. The efficiency of the optimized designs has been assessed by means of finite element modelling and compared against equivalent conventional designs. More than 200% increases in efficiency (reflected in the capacity-to-mass ratios) were achieved for all optimized trusses (when compared to their equivalent reference designs), demonstrating the effectiveness of the proposed optimization framework.
In this work, ginger straw waste-derived porous carbons, with high adsorption capacity, high adsorption rate, and good reusability for removing the toxic dye of methylene blue from wastewater, were prepared by a facile method under oxygen-limiting conditions. This study opens a new approach for the utilization of ginger straw waste, and the porous materials can be employed as great potential adsorbents for treating dye wastewater.
Bracing is commonly used to provide resistance to lateral forces in building structures. However, traditional bracing design approaches appear not to be underpinned by clear fundamental principles. Here, theoretically optimal arrangements of bracing members are sought for pre-existing building frames, already designed to carry gravity loads. For sake of simplicity existing frame elements are assumed to be capable of carrying additional loads and three types of bracing are considered: tension only bracing, bracing intersecting only at the corners of the existing frame, and unconstrained optimal bracing, where bracing elements can intersect at any location. Layout optimization techniques are used to identify initial design solutions; these are then related to Michell trusses to obtain exact reference volumes, against which the efficiency of other bracing layouts can be judged. It is shown that from a theoretical standpoint tension only bracing is inefficient and that the optimal angle of intersection between a pre-existing frame member and intersecting tension/compression bracing member pairs is 45 • , something that can potentially be adopted as a basic principle when designing bracing for a pre-existing frame.
Graphical AbstractSignal pathway of hypoglycemic mechanism of capsaicin in the pancreas of STZ-induced diabetic rats.
Transmissible loads are external loads defined by their line of action, with actual points of load application chosen as part of the topology optimization process. Although for problems where the optimal structure is a funicular, transmissible loads can be viewed as surface loads, in other cases such loads are free to be applied to internal parts of the structure. There are two main transmissible load formulations described in the literature: a rigid bar (constrained displacement) formulation or, less commonly, a migrating load (equilibrium) formulation. Here, we employ a simple Mohr’s circle analysis to show that the rigid bar formulation will only produce correct structural forms in certain specific circumstances. Numerical examples are used to demonstrate (and explain) the incorrect topologies produced when the rigid bar formulation is applied in other situations. A new analytical solution is also presented for a uniformly loaded cantilever structure. Finally, we invoke duality principles to elucidate the source of the discrepancy between the two formulations, considering both discrete truss and continuum topology optimization formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.