In this paper evidence that supports a new role for melatonin as a negative endogenous regulator of cytosolic phospholipase A(2) (cPLA(2)) is presented. When rat pineal glands were incubated in culture, time-dependent release of arachidonic acid (AA) was observed, which was significantly inhibited by a known 85-kDa cPLA(2) inhibitor, methyl arachidonyl fluorophosphonate. Co-incubation with melatonin inhibited the AA release in a concentration-dependent manner, and this decrease was accompanied by a reduction of cPLA(2) protein and mRNA expression. Melatonin-receptor agonists, 2-iodo-N-butanoyl-5-methoxytryptamine and 5-methoxycarbonylamino-N-acetyltryptamine, also decreased AA release and cPLA(2) protein and mRNA levels, while pre-incubation with the melatonin receptor antagonists luzindole and 2-phenylmelatonin abolished the melatonin effect. In vivo, as melatonin production reflected a typical diurnal variation, endogenous non-esterified AA and cPLA(2) mRNA levels in the rat pineal gland showed an off-phase diurnal pattern in relation to melatonin levels. Intravenous administration of isoproterenol, which has been shown to elevate melatonin production, also decreased the levels of non-esterified AA and cPLA(2) mRNA significantly. Direct administration of melatonin to rats by intravenous injection decreased the levels of non-esterified AA, cPLA(2) protein and mRNA in rat pineal glands. In conclusion, melatonin endogenously down-regulates cPLA(2) expression, presumably through melatonin-receptor-mediated processes.
In this paper evidence that supports a new role for melatonin as a negative endogenous regulator of cytosolic phospholipase A(2) (cPLA(2)) is presented. When rat pineal glands were incubated in culture, time-dependent release of arachidonic acid (AA) was observed, which was significantly inhibited by a known 85-kDa cPLA(2) inhibitor, methyl arachidonyl fluorophosphonate. Co-incubation with melatonin inhibited the AA release in a concentration-dependent manner, and this decrease was accompanied by a reduction of cPLA(2) protein and mRNA expression. Melatonin-receptor agonists, 2-iodo-N-butanoyl-5-methoxytryptamine and 5-methoxycarbonylamino-N-acetyltryptamine, also decreased AA release and cPLA(2) protein and mRNA levels, while pre-incubation with the melatonin receptor antagonists luzindole and 2-phenylmelatonin abolished the melatonin effect. In vivo, as melatonin production reflected a typical diurnal variation, endogenous non-esterified AA and cPLA(2) mRNA levels in the rat pineal gland showed an off-phase diurnal pattern in relation to melatonin levels. Intravenous administration of isoproterenol, which has been shown to elevate melatonin production, also decreased the levels of non-esterified AA and cPLA(2) mRNA significantly. Direct administration of melatonin to rats by intravenous injection decreased the levels of non-esterified AA, cPLA(2) protein and mRNA in rat pineal glands. In conclusion, melatonin endogenously down-regulates cPLA(2) expression, presumably through melatonin-receptor-mediated processes.
Major biochemical activities of the pineal gland include melatonin biosynthesis and 12-lipoxygenation. In this paper, we provide evidence in i o that melatonin regulates 12-lipoxygenation via 12-lipoxygenase (LOX) expression. The relationship between these two biochemical activities was established by monitoring levels of endogenous melatonin and a 12-LOX metabolite, 12-hydroxyeicosatetraenoic acid (12-HETE), in the rat pineal gland both during the light-dark cycle and after isoproterenol injection using GC\MS with negative ion chemical ionization. As pineal melatonin production reflected a typical diurnal variation, 12-HETE levels showed an off-phase diurnal pattern in relation to melatonin levels. Intravenous administration of isoproterenol, which has been shown to elevate melatonin production, decreased the 12-HETE level significantly. The reduction of 12-HETE levels during the dark phase and after isoproterenol injection was accompanied by decreases in 12-LOX mRNA and protein levels. Direct administration of melatonin to rats by intravenous injection decreased pineal 12-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.