The conventional ant colony algorithm is easy to fall into the local optimal in some complex environments, and the blindness in the initial stage of search leads to long searching time and slow convergence. In order to solve these problems, this paper proposes an improved ant colony algorithm and applies it to the path planning of cleaning robot. The algorithm model of the environmental map is established according to the grid method. And it built the obstacle matrix for the expansion and treatment of obstacles, so that the robot can avoid collision with obstacles as much as possible in the process of movement. The directional factor is introduced in the new heuristic function, and we can reduce the value of the inflection point of paths, enhance the algorithm precision, and avoid falling into the local optimal. The volatile factor of pheromones with an adaptive adjustment and the improved updating rule of pheromones can not only solve the problem that the algorithm falls into local optimum, but also accelerate the running efficiency of the algorithm in the later stage. Simulation results show that the algorithm has the better global searching ability, the convergence speed is obviously accelerated, and an optimal path can be planned in the complex environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.