An integrated method was explored to investigate the structure–activity relationship and interaction mechanism between a library of natural flavonoids and α-glucosidase.
Cardiotonic steroids (CTS) are clinically important drugs for the treatment of heart failure owing to their potent inhibition of cardiac Na+, K+-ATPase (NKA). Bufadienolides constitute one of the two major classes of CTS, but little is known about how they interact with NKA. We report a remarkable stereoselectivity of NKA inhibition by native 3β-hydroxy bufalin over the 3α-isomer, yet replacing the 3β-hydroxy group with larger polar groups in the same configuration enhances inhibitory potency. Binding of the two 13C-labelled glycosyl diastereomers to NKA were studied by solid-state NMR (SSNMR), which revealed interactions of the glucose group of the 3β- derivative with the inhibitory site, but much weaker interactions of the 3α- derivative with the enzyme. Molecular docking simulations suggest that the polar 3β-groups are closer to the hydrophilic amino acid residues in the entrance of the ligand-binding pocket than those with α-configuration. These first insights into the stereoselective inhibition of NKA by bufadienolides highlight the important role of the hydrophilic moieties at C3 for binding, and may explain why only 3β-hydroxylated bufadienolides are present as a toxic chemical defence in toad venom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.