Investigating quantum advantage in the NISQ era is a challenging problem whereas quantum machine learning becomes the most promising application that can be resorted to. However, no proposal has been investigated for arguably challenging inverse reinforcement learning to demonstrate the potential advantage. In this work, we propose a hybrid quantum-classical inverse reinforcement learning algorithm based on the variational quantum circuit with the generative adversarial framework. We find an important connection between the quantum gradient anomaly and the performance degradation, which suggest a gradient clipping strategy to stabilize the training process. In light of the algorithm, we study three classic control problems and the Hamiltonian parameter estimation in quantum sensing with shallow quantum circuits. The numerical results showcase that the control-enhanced quantum sensor can saturate quantum Cram'er-Rao bound only with a single variational layer, empirically demonstrating a parameter complexity advantage over the classical learning control. The proposed generative adversarial reinforcement learning algorithm achieves state-of-the-art performance in classical and quantum sensor control in terms of required number of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.