A 3D laser printing technique for realizing unprecedented stereo-chiral-luminescent silver nanostructures was developed to achieve a record-high fluorescent anisotropic factor.
Based on degradable pH-responsive hydrogel, we report on an enhanced three-dimensional data encryption security technique in which a pH value is used for information manipulation. Featuring three types of states upon the pH value variation, namely, shrinkage, expansion and degradation, the hydrogel renders a limited pH value window as the “key” for information decryption. The pH-dependent shrinkage-to-expansion conversion of the hydrogel leads to a threshold pH value for retrieving the recorded data, whilst the degradability of the hydrogel, which can be tuned by adjusting the composition ratio of PEGDA/AAc, gives rise to a second threshold pH value for irreversibly sabotaging the retrieved data. Pre-doping silver ions in the hydrogel facilitates explicit recording and reading of binary data in forms of three-dimensional silver patterns through photoreduction and scattering, respectively, with a femtosecond laser. By accurately matching the vertical spacing of the encoded silver nanopatterns with the diffraction-limited focal depth of the decryption microscope, we can tune the pH value to encrypt and retrieve information recorded in layers and set a critical pH value to smash encoded information, which proves a highly secured 3D data encoding protocol. This strategy can effectively enrich data encryption techniques, vastly enhancing data security within unattained chemical dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.