Cypermethrin (CMN) is a man-made insecticide, and its abuse has led to potential adverse effects, particularly in sensitive populations such as aquatic organisms. The present study was focused on the toxic phenotype and detoxification mechanism in grass carp (Ctenopharyngodon idella) after treatment with waterborne CMN (0.651 μg/L) for 6 weeks in vivo or 6.392 μM for 24 h in vitro. In vivo, we describe the toxic phenotype of the liver of grass carp in terms of pathological changes, serum transaminase levels, oxidative stress indexes, and apoptosis rates. RNA-Seq analysis (2 × 3 cDNA libraries) suggested a compromise of proteasome and oxidative phosphorylation signaling pathways under CMN exposure. Thus, these two pathways were chosen for the in vitro study, which suggested that the CMN intoxicationinduced proteasome pathway caused hepatotoxicity in the liver cell line of grass carp (L8824 cells). Moreover, pretreatment with MG132, a proteasome inhibitor, displayed protection against the toxic effects of CMN by enhancing antioxidative and antiinflammatory capability by directly inhibiting the proteasomal degradation of nuclear factor erythroid-2 related factor (Nrf2) and IκB-α, thus turning on the transcription of downstream genes of Nrf2 and NF-κB, respectively. Taken together, these results suggest proteasome activity as a reason for CMN-induced hepatotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.