Microplastic pollution in inland waters is receiving growing attentions. Reservoirs are suspected to be particularly vulnerable to microplastic pollution. However, very limited information is currently available on pollution characteristics of microplastics in reservoir ecosystems. This work studied the distribution and characteristics of microplastics in the backwater area of Xiangxi River, a typical tributary of the Three Gorges Reservoir. Microplastics were detected in both surface water and sediment with concentrations ranging from 0.55 × 10 to 342 × 10 items km and 80 to 864 items m, respectively. Polyethylene, polypropylene, and polystyrene were identified in surface water, whereas polyethylene, polypropylene, and polyethylene terephthalate, and pigments were observed in sediment. In addition, microplastics were also detected in the digestion tracts of 25.7% of fish samples, and polyethylene and nylon were identified. Redundancy analysis indicates a weak correlation between microplastics and water quality variables but a negative correlation with water level of the reservoir and Secchi depth. Results from this study confirm the presence of high abundance microplastics in reservoir impacted tributaries, and suggest that water level regulated hydrodynamic condition and input of nonpoint sources are important regulators for microplastic accumulation and distribution in the backwater area of reservoir tributaries.
Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long-term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade-long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche-based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.