Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing–structure–property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure–property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni–Co–Mn cathode materials illustrates M3I3’s approach to creating libraries of multiscale structure–property–processing relationships. We end with a future outlook toward recent developments in the field of M3I3.
LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) undergoes crystallographic and electronic changes when charging and discharging, which drive the cathode material close to or even beyond its stability window. To unravel the charge compensation mechanism of NCM622, spatially resolved atomic force microscopy (AFM) measurements in electrochemical strain microscopy (ESM) and conductive AFM (C-AFM) modes are obtained, and the spectroscopic information and crystallographic information are compared. All experiments are performed with two sets of samples: state-of-the-art samples that are composed of a binder, a conductive additive, and an active material and polished samples for single-particle analysis. Near-edge X-ray absorption fine structure spectroscopy shows that ionic Ni 2+ reacts to give Ni 3+ when charging and forms covalent bonds with its oxygen neighbors. A Ni 2+ /Ni 3+ gradient across the particles balances out with the increasing state of charge, as verified by ESM. Therefore, the results also provide an important view that improves the mechanistic understanding of ESM in electrode materials. Finally, the interplay between the electronic and ionic conductivities and the crystallinities of NCM622 cathodes is elaborated and discussed.
Here, we investigate the nonlinear relationship between the content of solid electrolytes in composite electrodes and the irreversible capacity via the degree of nanoscale uniformity of the surface morphology and chemical composition of the solid electrolyte interphase (SEI) layer. Using electrochemical strain microscopy (ESM) and Xray photoelectron spectroscopy (XPS), changes of the chemical composition and morphology (Li and F distribution) in SEI layers on the electrodes as a function of solid electrolyte contents are analyzed. As a result, we find that the solid electrolyte content affects the variation of the SEI layer thickness and chemical distributions of Li and F ions in the SEI layer, which, in turn, influence the Coulombic efficiency. This correlation determines the composition of the composite electrode surface that can maximize the physical and chemical uniformity of the solid electrolyte on the electrode, which is a key parameter to increase electrochemical performance in solid-state batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.