This paper focuses on dynamic environments for mobile robots and proposes a new mapping method combining hidden Markov models (HMMs) and Markov random fields (MRFs). Grid cells are used to represent the dynamic environment. The state change of every grid cell is modelled by an HMM with an unknown transition matrix. MRFs are applied to consider the dependence between different transition matrices. The unknown parameters are learnt from not only the corresponding observations but also its neighbours. Given the dependence, parameter maps are smooth. Expectation Maximum (EM) is applied to obtain the best parameters from observations. Finally, a simulation is done to evaluate the proposed method.
This paper focuses on mapping problem with known robot pose in static environments and proposes a Gaussian random field-based log odds occupancy mapping (GRF-LOOM). In this method, occupancy probability is regarded as an unknown parameter and the dependence between parameters are considered. Given measurements and the dependence, the parameters of not only observed space but also unobserved space can be predicted. The occupancy probabilities in log odds form are regarded as a GRF. This mapping task can be solved by the wellknown prediction equation in Gaussian processes, which involves an inverse problem. Instead of the prediction equation, a new recursive algorithm is also proposed to avoid the inverse problem. Finally, the proposed method is evaluated in simulations. Index Terms-Binary Bayes filter, Gaussian random field, Log odds occupancy mapping.
This paper focuses on the mapping problem for mobile robots in dynamic environments where the state of every point in space may change, over time, between free or occupied. The dynamical behaviour of a single point is modelled by a Markov chain, which has to be learned from the data collected by the robot. Spatial correlation is based on Gaussian random fields (GRFs), which correlate the Markov chain parameters according to their physical distance. Using this strategy, one point can be learned from its surroundings, and unobserved space can also be learned from nearby observed space. The map is a field of Markov matrices that describe not only the occupancy probabilities (the stationary distribution) as well as the dynamics in every point. The estimation of transition probabilities of the whole space is factorised into two steps: The parameter estimation for training points and the parameter prediction for test points. The parameter estimation in the first step is solved by the expectation maximisation (EM) algorithm. Based on the estimated parameters of training points, the parameters of test points are obtained by the predictive equation in Gaussian processes with noise-free observations. Finally, this method is validated in experimental environments.
The model of a networked temperature control system is easily affected by its surrounding environment. Because of that, it is hard to identify an accurate model. This paper proposes an adaptive model output following control based on system identification for a networked thermostat system. First, the time-varying system model is built via some thermal laws, whose parameters are identified based on the least-squares method (LSM). The time delay is transferred to deterministic by setting the data buffer. The system stability is ensured by a feedback controller. Meanwhile, an adaptive model output following controller with a command generator tracker (CGT) is designed to adjust the forward control input based on system identification. Finally, the effectiveness of the proposed method is illustrated by simulation and experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.