Recommendation systems are used when searching online databases. As such they are very important tools because they provide users with predictions of the outcomes of different potential choices and help users to avoid information overload. They can be used on e-commerce websites and have attracted considerable attention in the scientific community. To date, many personalized recommendation algorithms have aimed to improve recommendation accuracy from the perspective of vertex similarities, such as collaborative filtering and mass diffusion. However, diversity is also an important evaluation index in the recommendation algorithm. In order to study both the accuracy and diversity of a recommendation algorithm at the same time, this study introduced a "third dimension" to the commonly used user/product two-dimensional recommendation, and a recommendation algorithm is proposed that is based on a triangular area (TR algorithm). The proposed algorithm combines the Markov chain and collaborative filtering method to make recommendations for users by building a triangle model, making use of the triangulated area. Additionally, recommendation algorithms based on a triangulated area are parameter-free and are more suitable for applications in real environments. Furthermore, the experimental results showed that the TR algorithm had better performance on diversity and novelty for real datasets of MovieLens-100K and MovieLens-1M than did the other benchmark methods.
Named entity recognition aims to identify entities from unstructured text and is an important subtask for natural language processing and building knowledge graphs. Most of the existing entity recognition methods use conditional random fields as label decoders or use pointer networks for entity recognition. However, when the number of tags is large, the computational cost of method based on conditional random fields is high and the problem of nested entities cannot be solved. The pointer network uses two modules to identify the first and the last of the entities separately, and a single module can only focus on the information of the first or the last of the entities, but cannot pay attention to the global information of the entities. In addition, the neural network model has the problem of local instability. To solve mentioned problems, a named entity recognition model based on global pointer and adversarial training is proposed. To obtain global entity information, global pointer is used to decode entity information, and rotary relative position information is considered in the model designing to improve the model’s perception of position; to solve the model’s local instability problem, adversarial training is used to improve the robustness and generalization of the model. The experimental results show that the F1 score of the model are improved on several public datasets of OntoNotes5, MSRA, Resume, and Weibo compared with the existing mainstream models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.