The multi-center REACTION study has captured a broad range of data on physical, psychological and metabolic function as well as health status, biochemical and lifestyle information in 259 657 adults from the general population across the China.
BackgroundAbscisic acid (ABA) can regulate the expressions of many stress-responsive genes in plants. However, in defense responses to pathogens, mounting evidence suggests that ABA plays variable roles. Little information exists about genome-wide gene expression in ABA responses in tomato (Solanum lycopersicum L.), a model fruit crop plant.ResultsGlobal transcriptome profiles of tomato leaf responses to exogenous ABA were generated using Illumina RNA-sequencing. More than 173 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between treated and control leaves were assessed. In total, 50,616 transcripts were generated. Among them, 42,583 were functionally annotated in the NCBI non-redundant database and 47,877 in the tomato genome reference. Additionally, 31,107 transcripts were categorized into 57 functional groups based on Gene Ontology terms, and 14,371 were assigned to 310 Kyoto Encyclopedia of Genes and Genomes pathways. In both the ABA treatment and control samples, 39,671 transcripts were available to analyze their expressions, of which 21,712 (54.73%) responded to exogenous ABA. Of these transcripts, 2,787 were significantly differently expressed genes (DEGs). Many known and novel ABA-induced and -repressed genes were found. Exogenous ABA can influence the ABA signaling pathway with PYR/PYL/RCARs-PP2Cs-SnRK2s as the center. Eighteen PYL genes were detected. A large number of genes related to various transcription factors, heat shock proteins, pathogen resistance, and the salicylic acid, jasmonic acid, and ethylene signaling pathways were up-regulated by exogenous ABA.ConclusionsThe results indicated that ABA has the potential to improve pathogen-resistance and abiotic stress tolerance in tomato. This study presents the global expression analysis of ABA-regulated transcripts in tomato and provides a robust database for investigating the functions of genes induced by ABA.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-841) contains supplementary material, which is available to authorized users.
Liver tumorigenesis Lung metastasis p53 mut/+ Highlights Tsc1 deficiency facilitates p53 (haplo)insufficiency-mediated activation of the PTEN/Akt/mTOR axis to drive HCC tumorigenesis and metastasis. Inhibiting mTOR activation is a potential therapeutic strategy for p53 insufficiency and Tsc1 insufficiency-driven hepatocarcinogenesis. The oncogenic activity of the Akt/mTOR axis relies on Abcc4, which labels an aggressive subtype of human HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.