Inflammasome activation plays key roles in host defense, but also contributes to the pathogenesis of auto-inflammatory, and neurodegenerative diseases. As autophagy is connected with both the innate and adaptive immune systems, autophagic dysfunction is also closely related to inflammation, infection, and neurodegeneration. Here we identify that lincRNA-Cox2, previously known as a mediator of both the activation and repression of immune genes expression in innate immune cells, could bind NF-κB p65 and promote its nuclear translocation and transcription, modulating the expression of inflammasome sensor NLRP3 and adaptor ASC. Knockdown of lincRNA-Cox2 inhibited the inflammasome activation and prevented the lincRNA-Cox2-triggered caspase-1 activation, leading to decreased IL-1β secretion and weakened TIR-domain-containing adapter-inducing interferon-β (TRIF) cleavage, thereby enhancing TRIF-mediated autophagy. Elucidation of the link between lincRNA-Cox2 and the inflammasome-autophagy crosstalk in macrophage and microglia reveals a role for lncRNAs in activation of NLRP3 inflammasome and autophagy, and provides new opportunities for therapeutic intervention in neuroinflammation-dependent diseases.
A new potential deep-ultraviolet nonlinear optical material CsAlB3O6F was designed by a rational selection of fundamental structural units. This material does not require toxic raw materials and can be grown in an open system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.