The emergence of hyperspectral thermal infrared imaging spectrometers makes it possible to retrieve both the land surface temperature (LST) and the land surface emissivity (LSE) simultaneously. However, few articles focus on the problem of how the instrument’s spectral parameters and instrument noise level affect the LST and LSE inversion errors. In terms of instrument development, this article simulated three groups of hyperspectral thermal infrared data with three common spectral parameters and each group of data includes tens of millions of simulated radiances of 1525 emissivity curves with 17 center wavelength shift ratios, 6 full width at half maximum (FWHM) change ratios and 6 noise equivalent differential temperatures (NEDTs) under 15 atmospheric conditions with 6 object temperatures, inverted them by two temperature and emissivity separation methods (ISSTES and ARTEMISS), and analyzed quantitatively the effects of the spectral parameters change and noise of an instrument on the LST and LSE inversion errors. The results show that: (1) center wavelength shifts and noise affect the inversion errors strongly, while FWHM changes affect them weakly; (2) the LST and LSE inversion errors increase with the center wavelength shift ratio in a quadratic function and increase with FWHM change ratio slowly and linearly for both the inversion methods, however they increase with NEDT in an S-curve for ISSTES while they increase with NEDT slightly and linearly for ARTEMISS. During the design and development of a hyperspectral thermal infrared instrument, it is highly recommended to keep the potential center wavelength shift within 1 band and keep NEDT within 0.1K (corresponding LST error < 1K and LSE error < 0.015) for normal applications and within 0.03K (corresponding LST error < 0.5K and LSE error < 0.01) for better application effect and level.
There are numerous algorithms that can be used to retrieve land surface temperature (LST) and land surface emissivity (LSE) from hyperspectral thermal infrared (HTIR) data. The algorithms are sensitive to a number of factors, where noise is difficult to handle due to its unpredictability. Although there is a lot of research regarding the influence of noise on retrieval errors, few studies have focused on the mechanism. In this study, we selected the automatic retrieval of temperature and emissivity using spectral smoothness (ARTEMISS) algorithm—the representative of the iterative spectral smoothness temperature-emissivity separation algorithm family—as the research object and proposed an improved algorithm. First, we analyzed the influence mechanism of noise on the retrieval errors of ARTEMISS in theory. Second, we carried out a simulation and inversion experiment and analyzed the relationship between instrument spectral resolution, noise level, the ARTEMISS parameter setting and the retrieval errors separately. Last, we proposed an improved method (resolution-degrade-based spectral smoothness algorithm, RDSS) based on the mechanism and law of the influence of noise on retrieval errors and provided corresponding suggestions on instrument design. The results show that RDSS improves the accuracy of temperature inversion and is more effective for thermal infrared data with a high noise level and high spectral resolution, which can reduce the LST inversion error by up to 0.75 K and the LSE median absolute deviation (MAD) by 31%. In the presence of noise in HTIR data, the RDSS algorithm performs better than the ARTEMISS algorithm in terms of temperature-emissivity separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.