Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive.
The safety of the transmission lines maintains the stable and efficient operation of the smart grid. Therefore, it is very important and highly desirable to diagnose the health status of transmission lines by developing an efficient prediction model in the grid sensor network. However, the traditional methods have limitations caused by the characteristics of high dimensions, multimodality, nonlinearity, and heterogeneity of the data collected by sensors. In this paper, a novel model called LPR-MLP is proposed to predict the health status of the power grid sensor network. The LPR-MLP model consists of two parts: (1) local binary pattern (LBP), principal component analysis (PCA), and ReliefF are used to process image data and meteorological and mechanical data and (2) the multilayer perceptron (MLP) method is then applied to build the prediction model. The results obtained from extensive experiments on the real-world data collected from the online system of China Southern Power Grid demonstrate that this new LPR-MLP model can achieve higher prediction accuracy and precision of 86.31% and 85.3%, compared with four traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.