Abstract-By taking Jiande-Jiangshan Road (Zhejiang provincial road S316) as an example, the author indentifies the factors of social stability risk through the hierarchical holographic modeling method (HMM) and formulates single factor risk indicator system of social stability risk in road construction projects. The overall initial risk grade of the project is confirmed by means of weight allocation and superposition and consolidation of the single factor risk, qualitative and quantitative analysis as well as expertise. The author hopes that this essay and the corresponding measures and countermeasures put forward in this essay may be conducive to a further improvement in the social stability risk assessment mechanism for road construction projects.
Characterized by low bearing capacity and high compressibility, warm and ice-rich frozen soil is a kind of problematic soil, which makes the original frozen ground formed by of that unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. With the design and construction of major projects along the Qinghai-Tibet Engineering Corridor (QTEC), such as expressway and airport runway, it is a great challenge to favor the stability of overlying structures by formulating the proper engineering design principles and developing the valid engineering supporting techniques. The investigations carried out in recent years indicated that warm and ice-rich permafrost foundations were widespread, climate warming was significant, and the stability of existing engineering structures was poor, along the QTEC. When the warm and ice-rich frozen ground is used as the foundation soil, the implementation of ground improvement is an alternative measure to enhance the bearing capacity of foundation soil and eliminate the settlement of structures during operation, in order to guarantee the long-term stability of the structures. Based on the key factors determining the physicomechanical properties of frozen soil, an innovative idea of stabilizing the warm and ice-rich frozen soil based on chemical stabilization is proposed in this study, and then, an in situ ground improvement technique is introduced. This study intends to explore the feasibility of ground improvement in warm and ice-rich permafrost regions along the QTEC based on in situ chemical stabilization and provide the technical support and scientific reference to prevent and mitigate the hazards in the construction of major projects in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.