As the proposed method can reduce the number of features and select the best feature set, its classification performance was improved and the classification time was shortened; thus, it can be applied to various BCI systems.
Major depressive disorder (MDD) is a common and highly debilitating condition that threatens the health of millions of people. However, current diagnosis of depression relies on questionnaires that are highly correlated with physician experience and hence not completely objective. Electroencephalography (EEG) signals combined with deep learning techniques may be an objective approach to effective diagnosis of MDD. This study proposes an end-to-end deep learning framework for MDD diagnosis based on EEG signals. We used EEG signals from 29 healthy subjects and 24 patients with severe depression to calculate Accuracy, Precision, Recall, F1-Score, and Kappa coefficient, which were 90.98%, 91.27%, 90.59%, and 81.68%, respectively. In addition, we found that these values were highest when happy-neutral face pairs were used as stimuli for detecting depression. Compared with exiting methods for EEG-based MDD classification, ours can maintain stable model performance without re-calibration. The present results suggest that the method is highly accurate for diagnosis of MDD and can be used to develop an automatic plug-and-play EEG-based system for diagnosing depression.
ObjectveEmotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering complexity and limiting practical applications in traditional EEG emotion recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet.MethodsBaseline removal and sliding window slice used for preprocessing of the raw EEG signal, convolution blocks extracted features, LSTM network obtained the correlations of features, and the softmax function classified emotions.ResultsExtensive experiments in subject-dependent experimental protocol are conducted to evaluate the performance of the proposed E2ENNet, achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of 2-category experiment on DEAP dataset, 98.1% of 2-category experiment on DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset.ConclusionExperimental results show that E2ENNet can directly extract more discriminative features from raw EEG signals.SignificanceThis study provides a methodology for implementing a plug-and-play emotional brain-computer interface system.
The main characteristic of depression is emotional dysfunction, manifested by increased levels of negative emotions and decreased levels of positive emotions. Therefore, accurate emotion recognition is an effective way to assess depression. Among the various signals used for emotion recognition, electroencephalogram (EEG) signal has attracted widespread attention due to its multiple advantages, such as rich spatiotemporal information in multi-channel EEG signals. First, we use filtering and Euclidean alignment for data preprocessing. In the feature extraction, we use short-time Fourier transform and Hilbert–Huang transform to extract time-frequency features, and convolutional neural networks to extract spatial features. Finally, bi-directional long short-term memory explored the timing relationship. Before performing the convolution operation, according to the unique topology of the EEG channel, the EEG features are converted into 3D tensors. This study has achieved good results on two emotion databases: SEED and Emotional BCI of 2020 WORLD ROBOT COMPETITION. We applied this method to the recognition of depression based on EEG and achieved a recognition rate of more than 70% under the five-fold cross-validation. In addition, the subject-independent protocol on SEED data has achieved a state-of-the-art recognition rate, which exceeds the existing research methods. We propose a novel EEG emotion recognition framework for depression detection, which provides a robust algorithm for real-time clinical depression detection based on EEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.