Abstract-This paper addresses the fault detection problem for discrete-time Markovian jump systems with incomplete knowledge of transition probabilities, randomly varying nonlinearities and sensor saturations. For the Markovian mode jumping, the transition probability matrix is allowed to have partially unknown entries, while the cases with completely known or completely unknown transition probabilities are also investigated as two special cases. The randomly varying nonlinearities and the sensor saturations are introduced to reflect the limited capacity of the communication networks resulting from the noisy environment, probabilistic communication failures, measurements of limited amplitudes, etc. Two energy norm indices are used for the fault detection problem in order to account for, respectively, the restraint of disturbance and the sensitivity of faults. The purpose of the problem addressed is to design an optimized fault detection filter such that 1) the fault detection dynamics is stochastically stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H∞-norm. The characterization of the gains of the desired fault detection filters is derived in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness of the fault detection filtering scheme proposed in this paper.
Abstract-In this paper, the robust filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval [0 1]. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.Index Terms-Networked systems, nonlinear systems, packet dropout, robust filtering, stochastic systems, stochastic time-varying communication delays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.