Interleukin-17 (IL-17) is closely related to osteoarthritis (OA), but animal studies that employ IL-17 to induce OA are currently lacking. Therefore, this study evaluated the effect of IL-17 in the rabbit knee joint. The right knees served as the control group. The left knees were divided randomly into 4 groups: a Hulth group and 3 IL-17 groups (1-ng, 10-ng, and 50-ng groups). OA was induced in the Hulth group using Hulth's method. The IL-17 groups were injected with 1, 10, or 50 ng of IL-17 as indicated. Specimens were collected at 72 h, 1 week, 3 weeks, 6 weeks, and 12 weeks after surgery or the last injection. Subsequently, the following experiments were conducted: X-ray analysis, histological evaluation, and polymerase chain reaction (PCR) analysis of the mRNA expression levels of cartilage degeneration-related markers. At 12 weeks, like the Hulth group, the 10-ng and 50-ng IL-17 groups displayed typical manifestations of OA. The X-ray results, histological scores, and mRNA expression levels showed statistically significant differences between the control group and the 10-ng and 50-ng IL-17 groups. In sum, injecting 10 ng of IL-17 into the rabbit knee joint can induce OA similar to OA induced by Hulth's method.
This study was designed to evaluate the effects of drilling through the growth plate and using adipose-derived stem cells (ADSCs) and bone morphogenetic protein-2 (BMP-2) to treat femoral head epiphyseal ischemic necrosis, which can be done in juvenile rabbits. Passagefour bromodeoxyuridine (BrdU)-labeled ADSCs were cultured, assayed with MTT to determine their viability and stained with alizarin red dye to determine their osteogenic ability. Two-month-old, healthy male rabbits (1.2 to 1.4 kg, n=45) underwent ischemic induction and were randomly divided into five groups (group A: animal model control; group B: drilling; group C: drilling & ADSCs; group D: drilling & BMP-2; and group E: drilling & ADSCs & BMP-2). Magnetic resonance imaging (MRI), X-ray imaging, hematoxylin and eosin staining and BrdU immunofluorescence detection were applied 4, 6 and 10 weeks after treatment. Approximately 90% of the ADSCs were labeled with BrdU and showed good viability and osteogenic ability. Similar results were observed in the rabbits in groups C and E at weeks 6 and 10. The animals of groups C and E demonstrated normal hip structure and improved femoral epiphyseal quotients and trabecular areas compared with those of the groups A and B (P<0.01). Group D demonstrated improved femoral epiphyseal quotients and trabecular areas compared with those of groups A and B (P<0.05). In summary, drilling through the growth plate combined with ADSC and BMP-2 treatments induced new bone formation and protected the femoral head epiphysis from collapsing in a juvenile rabbit model of femoral head epiphyseal ischemic necrosis.
Background Infrapatellar fat pad (IPFP) is regarded as an essential knee tissue involved in osteoarthritis (OA) for its potential structural-related or metabolism-related function. This cross-sectional study aims to identify which part is more related to OA. Methods Patients with knee OA ( n = 53) and healthy controls ( n = 54) were prospectively recruited. Based on high-resolution magnetic resonance imaging with a slice thickness of only 0.35 mm, IPFP structural-related parameters (volume and maximal area), metabolism-related parameter (signal), degeneration indicators, and patellar maltracking indicators (patellar translation, patellofemoral angle, and Insall-Salvati ratio) were measured. IPFP volume (maximal area, and signal) was compared between healthy controls and OA patients. The level of significance for all comparisons was set as .05. Results OA patients had higher IPFP signal (672.9 ± 136.9 vs 567.3 ± 63.6, p = .009), but no significant difference in IPFP volume or maximal area compared with healthy controls. In healthy controls, IPFP signal was positively associated with age ( β = 1.481; 95% CI: 0.286–2.676; p = .018); IPFP maximal area was positively related to Insall-Salvati ratio ( β = 0.001; 95% CI: 0.0003–0.0017; p = .039), but not associated with patellar translation and patellofemoral angle. In OA patients, IPFP signal was positively associated with cartilage loss ( β = 0.005; 95% CI: 0.003–0.007; p = .013); no correlation between knee pain and IPFP volume or maximal area was observed. Conclusions The metabolism-related function of IPFP, which can be reflected by the IPFP signal, might play a more critical role in OA progression than its structural function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.