To overcome power fading induced by chromatic dispersion in optical fiber communications, optical field recovery is a promising solution for direct detection short-reach applications, such as fast-evolving data center interconnects (DCIs). To date, various direct detection schemes capable of optical field recovery have been proposed, including Kramers −Kronig (KK) and signal−signal beat interference (SSBI) iterative cancellation (IC) receivers. However, they are all restricted to the single sideband (SSB) modulation format, thus conspicuously losing half of the electrical spectral efficiency (SE) compared with double sideband (DSB) modulation. Additionally, SSB suffers from the noise folding issue, requiring a precise optical filter that complicates the receiver design. As such, it is highly desirable to investigate the field recovery of DSB signals via direct detection. In this paper, for the first time, we propose a novel receiver scheme called carrier-assisted differential detection (CADD) to realize optical field recovery of complex-valued DSB signals via direct detection. First, CADD doubles the electrical SE compared with the KK and SSBI IC receivers by adopting DSB modulation without sacrificing receiver sensitivities. Furthermore, by using direct detection without needing a precise receiver optical filter, CADD can employ cost-effective uncooled lasers as opposed to expensive temperature-controlled lasers in coherent systems. Our proposed receiver architecture opens a new class of direct detection schemes that are suitable for photonic integration analogous to homodyne receivers in coherent detection.
High speed data modulation based on bandwidth limited devices has been considered as a cost-effective way to upgrade 10G-EPON to the next generation 100G-EPON. In this paper, we experimentally demonstrate the modulation, fiber transmission and reception of 25-Gb/s signal based on directly modulated laser and photo-detector both operating at 10 GHz. Instead of digital signal processing, the chirp management, dispersion compensation and frequency equalization in our scheme are realized in optical domain using a single delay interferometer. Three popular formats are investigated, including NRZ-OOK, PAM-4 and duobinary. According to the experimental results, the NRZ-OOK format shows its superiority in both launch power and receiver sensitivity, which provides a cost-effective solution for the construction of 100-Gb/s TWDM-PON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.