Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38–41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11–14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6–8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.
The concrete-faced rockfill dam (CFRD) is an important dam type in the selection of high dams to be constructed in Western China, owing to its direct utilization of local materials, good adaptability, and distinct economic advantages. Over the past decades, China has gained successful experience in the construction of 200 m CFRDs, providing the necessary technical accumulation for the development of 250-300 m ultra-high CFRDs. This paper summarizes these successful experiences and analyzes the problems of a number of major 200 m CFRDs around the world.In addition, it discusses the key technologies and latest research progress regarding safety in the construction of 250-300 m ultra-high CFRDs, and suggests focuses and general ideas for future research.
Live microbes have been isolated from rock salt up to Permian age. Only obligatory cellular functions can be performed in halite-buried cells. Consequently, their genomic sequences are likely to remain virtually unchanged. However, the available sequence information from these organisms is scarce and consists of mainly ribosomal 16S sequences. Here, live archaea were isolated from early Cretaceous (∼ 123 million years old) halite from the depth of 2000 m in Qianjiang Depression, Hubei Province, China. The sample was radiologically dated and subjected to rigorous surface sterilization before microbe isolation. The isolates represented a single novel species of Halobacterium, for which we suggest the name Halobacterium hubeiense, type strain Hbt. hubeiense JI20-1. The species was closely related to a Permian (225-280 million years old) isolate, Halobacterium noricense, originating from Alpine rock salt. This study is the first one to publish the complete genome of an organism originating from surface-sterilized ancient halite. In the future, genomic data from halite-buried microbes can become a key factor in understanding the mechanisms by which these organisms are able to survive in harsh conditions deep underground or possibly on other celestial bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.